A367593 Nonnegative integers k such that (R(k) - 1)/(k + 1) is an integer, where R(k) is the digit reversal of k.
0, 1, 10, 100, 147, 1000, 1099, 1407, 10000, 14007, 100000, 140007, 1000000, 1400007, 2124736, 10000000, 14000007, 100000000, 123456789, 140000007, 1000000000, 1234506789, 1400000007, 10000000000, 12345006789, 14000000007, 21247524736, 100000000000, 123450006789
Offset: 1
Examples
123456789 is a term since (987654321 - 1)/(123456789 + 1) = 8, which is an integer.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..44
Programs
-
Mathematica
a={}; For[k=0, k<=10^10, k++,If[IntegerQ[(FromDigits[Reverse[IntegerDigits[k]]]-1)/(k+1)],AppendTo[a,k]]]; a Select[Range[0,10^6],IntegerQ[(IntegerReverse[#]-1)/(#+1)]&] (* The program generates the first 13 terms of the sequence. *) (* Harvey P. Dale, Aug 11 2024 *)
-
PARI
isok(k) = denominator((fromdigits(Vecrev(digits(k))) - 1)/(k + 1)) == 1; \\ Michel Marcus, Nov 30 2023
-
Python
def digit_reversal(n): return int(str(n)[::-1]) def find_integers(): result = [] for k in range(0, 10**10): reversed_k = digit_reversal(k) if (reversed_k - 1) % (k + 1) == 0: result.append(k) return result integers_list = find_integers() print(integers_list)
-
Python
from itertools import product, count, islice def A367593_gen(): # generator of terms yield from (0,1,10) for l in count(1): m = 10**(l+1) for d in product('0123456789',repeat=l): for a, b, c in ((1, 0, 0), (1, 1, 0), (1, 4, 2), (1, 5, 5), (1, 7, 5)): k = a*m+int(s:=''.join(d))*10+b r = b*m+int(s[::-1])*10+a if c*(k+1)==r-1: yield k a,b = 1,9 k = a*m+int(s:=''.join(d))*10+b r = b*m+int(s[::-1])*10+a if not (r-1)%(k+1): yield k a,b,c=2,6,3 for d in product('0123456789',repeat=l): k = a*m+int(s:=''.join(d))*10+b r = b*m+int(s[::-1])*10+a if c*(k+1)==r-1: yield k A367593_list = list(islice(A367593_gen(),20)) # Chai Wah Wu, Dec 01 2023
Formula
A367728(a(n)) = 1.
Comments