cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A127680 a(0) = 1; a(n+1) = Sum_{k=0..n} a(n-k)*a(floor(k/2)).

Original entry on oeis.org

1, 1, 2, 4, 8, 17, 35, 74, 154, 324, 677, 1422, 2977, 6246, 13086, 27444, 57518, 120600, 252794, 529994, 1111013, 2329187, 4882755, 10236280, 21458943, 44986461, 94308415, 197707134, 414469000, 868886834, 1821517772, 3818600772
Offset: 0

Views

Author

Leroy Quet, Jan 23 2007

Keywords

Crossrefs

Programs

  • Mathematica
    f[l_List] := Block[{n = Length[l] - 1},Append[l, Sum[l[[n - k + 1]]*l[[Floor[k/2] + 1]], {k, 0, n}]]];Nest[f, {1}, 33] (* Ray Chandler, Feb 13 2007 *)

Formula

G.f. A(x) satisfies: A(x) = 1 / (1 - x * (1 + x) * A(x^2)). - Ilya Gutkovskiy, Nov 15 2021
a(n) ~ c * d^n, where d = 2.096382783759695271747034891835844892559952962948180418542044889824924... and c = 0.413348184087944400305975399220165744000861336139702047444087822224828... - Vaclav Kotesovec, Nov 16 2021

Extensions

Extended by Ray Chandler, Feb 13 2007

A367653 G.f. A(x) satisfies A(x) = 1 / (1 - x * (1 + x + x^2 + x^3) * A(x^4)).

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 32, 64, 128, 257, 515, 1032, 2068, 4146, 8310, 16656, 33384, 66916, 134125, 268837, 538850, 1080064, 2164860, 4339204, 8697416, 17432944, 34942268, 70037629, 140382111, 281379296, 563991416, 1130453878, 2265860666, 4541648896, 9103196384
Offset: 0

Views

Author

Seiichi Manyama, Nov 26 2023

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, v[j\4+1]*v[i-j])); v;

Formula

a(0) = 1; a(n) = Sum_{k=0..n-1} a(floor(k/4)) * a(n-1-k).

A367652 G.f. A(x) satisfies A(x) = 1 / (1 - x * (1 + x + x^2) * A(x^3)).

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 32, 65, 131, 264, 534, 1078, 2176, 4396, 8877, 17925, 36202, 73108, 147636, 298152, 602108, 1215933, 2455552, 4958915, 10014374, 20223760, 40841302, 82477816, 166561622, 336366426, 679282324, 1371791274, 2770293218, 5594527784, 11297988864
Offset: 0

Views

Author

Seiichi Manyama, Nov 26 2023

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, v[j\3+1]*v[i-j])); v;

Formula

a(0) = 1; a(n) = Sum_{k=0..n-1} a(floor(k/3)) * a(n-1-k).

A367658 G.f. A(x) satisfies A(x) = 1 / (1 - x - x * (1 + x + x^2 + x^3 + x^4) * A(x^5)).

Original entry on oeis.org

1, 2, 5, 13, 34, 89, 234, 615, 1616, 4246, 11156, 29314, 77026, 202394, 531811, 1397387, 3671781, 9647988, 25351094, 66612640, 175031647, 459913889, 1208471657, 3175385173, 8343655339, 21923823599, 57607130438, 151368736483, 397737124030, 1045095727865
Offset: 0

Views

Author

Seiichi Manyama, Nov 26 2023

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=v[i]+sum(j=0, i-1, v[j\5+1]*v[i-j])); v;

Formula

a(0) = 1; a(n) = a(n-1) + Sum_{k=0..n-1} a(floor(k/5)) * a(n-1-k).

A367751 E.g.f. satisfies A(x) = exp(x * (1 + x + x^2 + x^3 + x^4) * A(x^5)).

Original entry on oeis.org

1, 1, 3, 13, 73, 501, 4051, 37633, 394353, 4596553, 58941091, 844031541, 12949163833, 213873687613, 3782022682803, 71267635330921, 1439160383457121, 30612704101371153, 686728250047551043, 16198763975779425373, 400727742254252310441
Offset: 0

Views

Author

Seiichi Manyama, Nov 29 2023

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!*sum(j=0, i-1, (j+1)*v[j\5+1]*v[i-j]/((j\5)!*(i-1-j)!))); v;

Formula

a(0) = 1; a(n) = (n-1)! * Sum_{k=0..n-1} (k+1) * a(floor(k/5)) * a(n-1-k) / (floor(k/5)! * (n-1-k)!).
Showing 1-5 of 5 results.