cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A349365 G.f. A(x) satisfies A(x) = 1 / (1 - x - x * A(x^2)).

Original entry on oeis.org

1, 2, 4, 10, 24, 60, 148, 370, 920, 2296, 5720, 14268, 35568, 88700, 221156, 551482, 1375096, 3428888, 8549944, 21319624, 53160896, 132558360, 330537528, 824204780, 2055176304, 5124638944, 12778424976, 31863351980, 79452130896, 198116051644, 494007751668
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 15 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 30; A[] = 0; Do[A[x] = 1/(1 - x - x A[x^2]) + O[x]^(nmax + 1) // Normal,nmax + 1]; CoefficientList[A[x], x]
    a[0] = 1; a[1] = 2; a[n_] := a[n] = a[n - 2] + Sum[a[Floor[k/2]] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 30}]
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=v[i]+sum(j=0, (i-1)\2, v[j+1]*v[i-2*j])); v; \\ Seiichi Manyama, Nov 26 2023

Formula

G.f.: 1 / (1 - x - x / (1 - x^2 - x^2 / (1 - x^4 - x^4 / (1 - x^8 - x^8 / (1 - ...))))).
a(0) = 1, a(1) = 2; a(n) = a(n-2) + Sum_{k=0..n-1} a(floor(k/2)) * a(n-k-1).
a(n) ~ c * d^n, where d = 2.4935271724548067876965033643037290636931200352851874903211458249308... and c = 0.6156170089558875346518987360369130661426312977478830077668203229773... - Vaclav Kotesovec, Nov 16 2021
a(0) = 1; a(n) = a(n-1) + Sum_{k=0..floor((n-1)/2)} a(k) * a(n-1-2*k). - Seiichi Manyama, Nov 26 2023

A367653 G.f. A(x) satisfies A(x) = 1 / (1 - x * (1 + x + x^2 + x^3) * A(x^4)).

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 32, 64, 128, 257, 515, 1032, 2068, 4146, 8310, 16656, 33384, 66916, 134125, 268837, 538850, 1080064, 2164860, 4339204, 8697416, 17432944, 34942268, 70037629, 140382111, 281379296, 563991416, 1130453878, 2265860666, 4541648896, 9103196384
Offset: 0

Views

Author

Seiichi Manyama, Nov 26 2023

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, v[j\4+1]*v[i-j])); v;

Formula

a(0) = 1; a(n) = Sum_{k=0..n-1} a(floor(k/4)) * a(n-1-k).

A367654 G.f. A(x) satisfies A(x) = 1 / (1 - x * (1 + x + x^2 + x^3 + x^4) * A(x^5)).

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1025, 2051, 4104, 8212, 16432, 32882, 65798, 131664, 263464, 527200, 1054948, 2110989, 4224165, 8452706, 16914168, 33845864, 67726796, 135523764, 271187944, 542656864, 1085875984, 2172877052, 4348005437, 8700515871
Offset: 0

Views

Author

Seiichi Manyama, Nov 26 2023

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, v[j\5+1]*v[i-j])); v;

Formula

a(0) = 1; a(n) = Sum_{k=0..n-1} a(floor(k/5)) * a(n-1-k).

A367652 G.f. A(x) satisfies A(x) = 1 / (1 - x * (1 + x + x^2) * A(x^3)).

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 32, 65, 131, 264, 534, 1078, 2176, 4396, 8877, 17925, 36202, 73108, 147636, 298152, 602108, 1215933, 2455552, 4958915, 10014374, 20223760, 40841302, 82477816, 166561622, 336366426, 679282324, 1371791274, 2770293218, 5594527784, 11297988864
Offset: 0

Views

Author

Seiichi Manyama, Nov 26 2023

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, v[j\3+1]*v[i-j])); v;

Formula

a(0) = 1; a(n) = Sum_{k=0..n-1} a(floor(k/3)) * a(n-1-k).

A367655 G.f. A(x) satisfies A(x) = 1 / (1 - x - x * (1 + x) * A(x^2)).

Original entry on oeis.org

1, 2, 5, 14, 39, 111, 314, 894, 2539, 7224, 20536, 58413, 166102, 472410, 1343448, 3820748, 10865805, 30901790, 87882171, 249931270, 710786078, 2021427153, 5748794540, 16349171957, 46495891170, 132231060820, 376055838670, 1069476434880, 3041515866674
Offset: 0

Views

Author

Seiichi Manyama, Nov 26 2023

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=v[i]+sum(j=0, i-1, v[j\2+1]*v[i-j])); v;

Formula

a(0) = 1; a(n) = a(n-1) + Sum_{k=0..n-1} a(floor(k/2)) * a(n-1-k).

A367747 E.g.f. satisfies A(x) = exp(x * (1 + x) * A(x^2)).

Original entry on oeis.org

1, 1, 3, 13, 73, 561, 4771, 49813, 562353, 7340833, 102829411, 1627648221, 27294311353, 502042022353, 9759264753603, 205434011254501, 4544894700204001, 107346788357502273, 2657668122191037763, 69701762677026498733, 1909106308252976007081
Offset: 0

Views

Author

Seiichi Manyama, Nov 29 2023

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!*sum(j=0, i-1, (j+1)*v[j\2+1]*v[i-j]/((j\2)!*(i-1-j)!))); v;

Formula

a(0) = 1; a(n) = (n-1)! * Sum_{k=0..n-1} (k+1) * a(floor(k/2)) * a(n-1-k) / (floor(k/2)! * (n-1-k)!).

A127681 a(0) = 1. a(n+1) = sum{k=0 to n} a(n-k)*a(ceiling(k/2)).

Original entry on oeis.org

1, 1, 2, 4, 9, 19, 42, 90, 198, 428, 936, 2030, 4430, 9626, 20978, 45622, 99367, 216197, 470736, 1024420, 2230183, 4853881, 10566170, 22997974, 50061240, 108964596, 237186018, 516272178, 1123772192, 2446081048, 5324371354, 11589437278
Offset: 0

Views

Author

Leroy Quet, Jan 23 2007

Keywords

Crossrefs

Cf. A127680.

Programs

  • Maple
    f:= proc(n) option remember;
        add(procname(n-1-k)*procname(ceil(k/2)),k=0..n-1)
    end proc:
    f(0):= 1:
    map(f, [$0..40]); # Robert Israel, Feb 16 2018
  • Mathematica
    f[l_List] := Block[{n = Length[l] - 1},Append[l, Sum[l[[n - k + 1]]*l[[Ceiling[k/2] + 1]], {k, 0, n}]]];Nest[f, {1}, 32] (* Ray Chandler, Feb 13 2007 *)

Formula

a(n) ~ c * d^n, where d = 2.17668434612191638687360948440303534082431658053308188275404767951385648... and c = 0.39120452795484998747876543545867360129596245925827624710922741574667... - Vaclav Kotesovec, Nov 16 2021

Extensions

Extended by Ray Chandler, Feb 13 2007
Showing 1-7 of 7 results.