cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A127680 a(0) = 1; a(n+1) = Sum_{k=0..n} a(n-k)*a(floor(k/2)).

Original entry on oeis.org

1, 1, 2, 4, 8, 17, 35, 74, 154, 324, 677, 1422, 2977, 6246, 13086, 27444, 57518, 120600, 252794, 529994, 1111013, 2329187, 4882755, 10236280, 21458943, 44986461, 94308415, 197707134, 414469000, 868886834, 1821517772, 3818600772
Offset: 0

Views

Author

Leroy Quet, Jan 23 2007

Keywords

Crossrefs

Programs

  • Mathematica
    f[l_List] := Block[{n = Length[l] - 1},Append[l, Sum[l[[n - k + 1]]*l[[Floor[k/2] + 1]], {k, 0, n}]]];Nest[f, {1}, 33] (* Ray Chandler, Feb 13 2007 *)

Formula

G.f. A(x) satisfies: A(x) = 1 / (1 - x * (1 + x) * A(x^2)). - Ilya Gutkovskiy, Nov 15 2021
a(n) ~ c * d^n, where d = 2.096382783759695271747034891835844892559952962948180418542044889824924... and c = 0.413348184087944400305975399220165744000861336139702047444087822224828... - Vaclav Kotesovec, Nov 16 2021

Extensions

Extended by Ray Chandler, Feb 13 2007

A367654 G.f. A(x) satisfies A(x) = 1 / (1 - x * (1 + x + x^2 + x^3 + x^4) * A(x^5)).

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1025, 2051, 4104, 8212, 16432, 32882, 65798, 131664, 263464, 527200, 1054948, 2110989, 4224165, 8452706, 16914168, 33845864, 67726796, 135523764, 271187944, 542656864, 1085875984, 2172877052, 4348005437, 8700515871
Offset: 0

Views

Author

Seiichi Manyama, Nov 26 2023

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, v[j\5+1]*v[i-j])); v;

Formula

a(0) = 1; a(n) = Sum_{k=0..n-1} a(floor(k/5)) * a(n-1-k).

A367652 G.f. A(x) satisfies A(x) = 1 / (1 - x * (1 + x + x^2) * A(x^3)).

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 32, 65, 131, 264, 534, 1078, 2176, 4396, 8877, 17925, 36202, 73108, 147636, 298152, 602108, 1215933, 2455552, 4958915, 10014374, 20223760, 40841302, 82477816, 166561622, 336366426, 679282324, 1371791274, 2770293218, 5594527784, 11297988864
Offset: 0

Views

Author

Seiichi Manyama, Nov 26 2023

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, v[j\3+1]*v[i-j])); v;

Formula

a(0) = 1; a(n) = Sum_{k=0..n-1} a(floor(k/3)) * a(n-1-k).

A367657 G.f. A(x) satisfies A(x) = 1 / (1 - x - x * (1 + x + x^2 + x^3) * A(x^4)).

Original entry on oeis.org

1, 2, 5, 13, 34, 90, 238, 629, 1662, 4394, 11616, 30707, 81173, 214584, 567259, 1499563, 3964128, 10479273, 27702219, 73231500, 193589270, 511758023, 1352844978, 3576279113, 9453982143, 24991835308, 66066533905, 174648514118, 461687660561, 1220482733670
Offset: 0

Views

Author

Seiichi Manyama, Nov 26 2023

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=v[i]+sum(j=0, i-1, v[j\4+1]*v[i-j])); v;

Formula

a(0) = 1; a(n) = a(n-1) + Sum_{k=0..n-1} a(floor(k/4)) * a(n-1-k).

A367749 E.g.f. satisfies A(x) = exp(x * (1 + x + x^2 + x^3) * A(x^4)).

Original entry on oeis.org

1, 1, 3, 13, 73, 501, 4051, 37633, 394353, 4777993, 62569891, 893927541, 13827333433, 234241234813, 4212828738483, 80727388033321, 1641227208417121, 35581993575319953, 810641581182744643, 19416795485684156893, 487647253209539939241
Offset: 0

Views

Author

Seiichi Manyama, Nov 29 2023

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!*sum(j=0, i-1, (j+1)*v[j\4+1]*v[i-j]/((j\4)!*(i-1-j)!))); v;

Formula

a(0) = 1; a(n) = (n-1)! * Sum_{k=0..n-1} (k+1) * a(floor(k/4)) * a(n-1-k) / (floor(k/4)! * (n-1-k)!).

A367794 G.f. A(x) satisfies A(x) = 1 / (1 - x * A(x^4)).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 4, 5, 7, 10, 14, 19, 26, 36, 50, 69, 95, 131, 181, 250, 346, 478, 660, 911, 1259, 1740, 2404, 3320, 4586, 6336, 8754, 12093, 16705, 23077, 31881, 44043, 60844, 84053, 116116, 160410, 221602, 306136, 422916, 584242, 807110, 1114996
Offset: 0

Views

Author

Seiichi Manyama, Nov 30 2023

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, (i-1)\4, v[j+1]*v[i-4*j])); v;
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A367794(n): return sum(A367794(k)*A367794(n-1-(k<<2)) for k in range(n+3>>2)) if n else 1 # Chai Wah Wu, Nov 30 2023

Formula

a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/4)} a(k) * a(n-1-4*k).
Showing 1-6 of 6 results.