cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369316 Number of Dyck bridges with resets to zero from (0,0) to (n,0).

Original entry on oeis.org

1, 0, 2, 2, 8, 14, 40, 84, 216, 486, 1200, 2780, 6744, 15836, 38096, 90056, 215728, 511750, 1223136, 2907052, 6939544, 16511028, 39386384, 93768696, 223589648, 532502748, 1269433376, 3023953560, 7207744496, 17172061944, 40926792224, 97513876880, 232395416672
Offset: 0

Views

Author

Florian Schager, Jan 19 2024

Keywords

Comments

A Dyck bridge is a lattice path with steps U = (1,1) and D = (1,-1) that is allowed to go below the x-axis and ends at altitude 0.
A reset to zero is a step R = (1,-h) at altitude h for |h| > 1.

Examples

			For n = 4 the a(4) = 8 paths are UUUR, UUDD, UDUD, UDDU, DUUD, DUDU, DDUU, DDDR.
		

Crossrefs

Cf. A224747 (Dyck excursions).

Programs

  • Maple
    K := 1 - z*(u + 1/u);
    v1, u1 := solve(K, u);
    B := -z*diff(v1, z)/v1;
    W := 1/(1 - 2*z);
    W1 := -z*diff(v1, z)/v1^2;
    Wminus1 := z*diff(u1, z);
    Q := z*(W - B - W1 - Wminus1);
    series(B/(1 - Q), z, 40);
    # second Maple program:
    b:= proc(x, y) option remember; `if`(x=0, `if`(y=0, 1, 0),
          `if`(y>1, b(x-1, 0), 0)+b(x-1, abs(y-1))+b(x-1, y+1))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..32);  # Alois P. Heinz, Jan 19 2024
  • Mathematica
    b[x_, y_] := b[x, y] = If[x == 0, If[y == 0, 1, 0],
       If[y > 1, b[x - 1, 0], 0] + b[x - 1, Abs[y - 1]] + b[x - 1, y + 1]];
    a[n_] := b[n, 0];
    Table[a[n], {n, 0, 32}] (* Jean-François Alcover, Feb 23 2025, after Alois P. Heinz *)
  • PARI
    seq(n) = my(r=sqrt(1 - 4*x^2 + O(x*x^n))); Vec((1 - 2*x)*(1 + r)^2/(2*(1 - 2*x - 2*x^2 + 2*x^3)*r + 2 - 4*x - 8*x^2 + 12*x^3 + 8*x^4)) \\ Andrew Howroyd, Jan 19 2024

Formula

G.f.: -(2*z - 1)*(1 + sqrt(-4*z^2 + 1))^2/((4*z^3 - 4*z^2 - 4*z + 2)*sqrt(-4*z^2 + 1) + 8*z^4 + 12*z^3 - 8*z^2 - 4*z + 2).
a(n) = (4*(2*n-5)*a(n-2) +4*(n-1)*a(n-3) -16*(n-4)*a(n-4) -16*(n-4)*a(n-5))/(n-1) for n>=5. - Alois P. Heinz, Jan 20 2024