A369346 Continued fraction expansion of the real root of x^3 - x^2 - 1 = 0.
1, 2, 6, 1, 3, 5, 4, 22, 1, 1, 4, 1, 2, 84, 1, 3, 1, 6, 1, 3, 1, 9, 1, 1, 1, 1, 19, 3, 1, 2, 1, 5, 1, 5, 2, 2, 1, 1, 1, 1, 76, 6, 8, 1, 1, 5, 1, 5, 1, 1, 25, 1, 2, 1, 116, 2, 1, 8, 1, 1, 3, 1, 53, 5, 276, 2, 1, 1, 1, 3, 3, 2, 1, 1, 4, 13, 1, 1, 1, 4, 1, 1, 1, 9, 9, 1, 1, 9, 6, 1, 2, 32
Offset: 0
Links
- Patrick McKinley, Table of n, a(n) for n = 0..12174
- Eric Weisstein's World of Mathematics, Supergolden Ratio.
Programs
-
Mathematica
ContinuedFraction[x/.First[Solve[x^3-x^2-1==0,x]],92] (* Stefano Spezia, Jan 21 2024 *)
-
PARI
\p100 \\ realprecision contfrac(solve(x = 1, 2, x^3 - x^2 - 1),, 80) \\ Hugo Pfoertner, Jan 21 2024
-
bc
/* The "test" calculation evaluates the cubic to confirm the calculation of the root. */ define iter(frac) {j = 0 while(frac > 1){ frac -= 1; j+=1} j return 1/frac} scale=12578 f=(1+(e(l(((29+3*sqrt(93))/2))/3))+(e(l(((29-3*sqrt(93))/2))/3)))/3 psi=f test=(psi-1)*psi*psi-1 for(i=0;i<12175;i++)f=iter(f)
Extensions
Offset changed by Andrew Howroyd, Feb 14 2025