cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369346 Continued fraction expansion of the real root of x^3 - x^2 - 1 = 0.

Original entry on oeis.org

1, 2, 6, 1, 3, 5, 4, 22, 1, 1, 4, 1, 2, 84, 1, 3, 1, 6, 1, 3, 1, 9, 1, 1, 1, 1, 19, 3, 1, 2, 1, 5, 1, 5, 2, 2, 1, 1, 1, 1, 76, 6, 8, 1, 1, 5, 1, 5, 1, 1, 25, 1, 2, 1, 116, 2, 1, 8, 1, 1, 3, 1, 53, 5, 276, 2, 1, 1, 1, 3, 3, 2, 1, 1, 4, 13, 1, 1, 1, 4, 1, 1, 1, 9, 9, 1, 1, 9, 6, 1, 2, 32
Offset: 0

Views

Author

Patrick McKinley, Jan 20 2024

Keywords

Crossrefs

Cf. A092526 (decimal expansion), A381124, A381125 (convergents).

Programs

  • Mathematica
    ContinuedFraction[x/.First[Solve[x^3-x^2-1==0,x]],92] (* Stefano Spezia, Jan 21 2024 *)
  • PARI
    \p100 \\ realprecision
    contfrac(solve(x = 1, 2, x^3 - x^2 - 1),, 80) \\ Hugo Pfoertner, Jan 21 2024
  • bc
    /* The "test" calculation evaluates the cubic to confirm the calculation of the root. */
    define iter(frac)
    {j = 0
     while(frac > 1){
       frac -= 1;
       j+=1}
     j
     return 1/frac}
    scale=12578
    f=(1+(e(l(((29+3*sqrt(93))/2))/3))+(e(l(((29-3*sqrt(93))/2))/3)))/3
    psi=f
    test=(psi-1)*psi*psi-1
    for(i=0;i<12175;i++)f=iter(f)
    

Extensions

Offset changed by Andrew Howroyd, Feb 14 2025