cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A372029 For a positive number k, let L(k) denote the list consisting of k followed by the prime factors of k, with repetition, in nondecreasing order; sequence gives composite k such that the digits of L(k) are in nondecreasing order.

Original entry on oeis.org

12, 25, 35, 111, 112, 125, 222, 245, 333, 335, 445, 1225, 2225, 11125, 33445, 334445, 3333335, 3334445, 3444445, 33333445, 333333335, 334444445, 3333333335, 33333334445, 333333333335, 33333333334445, 33333333444445, 444444444444445, 2222222222222225, 11111111111111125
Offset: 1

Views

Author

Scott R. Shannon, Apr 16 2024

Keywords

Comments

Terms cannot end in 4, 6, 8, or 9 because 2 would be a factor and no prime consists entirely of 9's. - Michael S. Branicky, Apr 22 2024

Examples

			The initial terms and their factorizations are:
   12 = [2, 2, 3]
   25 = [5, 5]
   35 = [5, 7]
   111 = [3, 37]
   112 = [2, 2, 2, 2, 7]
   125 = [5, 5, 5]
   222 = [2, 3, 37]
   245 = [5, 7, 7]
   333 = [3, 3, 37]
   335 = [5, 67]
   445 = [5, 89]
   1225 = [5, 5, 7, 7]
   2225 = [5, 5, 89]
   11125 = [5, 5, 5, 89]
   33445 = [5, 6689]
   334445 = [5, 66889]
   3333335 = [5, 666667]
   3334445 = [5, 666889]
   3444445 = [5, 688889]
   33333445 = [5, 6666689]
   333333335 = [5, 66666667]
   334444445 = [5, 66888889]
   ...
12 is a term since the list L(12) is [12,2,2,3], in which the digits 1,2,2,2,3 are in nondecreasing order.
121 is not a term since L(121) = [121,11,11], and the digits 1,2,1,1,1,1,1 are not in nondecreasing order.
		

Crossrefs

Programs

  • Python
    from sympy import factorint, isprime
    def nd(s): return sorted(s) == list(s)
    def ok(n):
        if n < 4 or isprime(n): return False
        s, f = str(n), "".join(str(p)*e for p, e in factorint(n).items())
        return nd(s+f)
    print([k for k in range(10**5) if ok(k)]) # Michael S. Branicky, Apr 22 2024
    
  • Python
    # faster for initial segment of sequence
    from sympy import factorint, isprime
    from itertools import count, islice, combinations_with_replacement as mc
    def nd(s): return s == "".join(sorted(s))
    def bgen(d): # can't end in 8 or 9
        yield from ("".join(m) for m in mc("1234567", d))
    def agen(): # generator of terms
        for d in count(2):
            for s in bgen(d):
                t = int(s)
                if any(s[-1] > c and t%int(c) == 0 for c in "2357"): continue
                if isprime(t): continue
                if nd(s+"".join(str(p)*e for p, e in factorint(t).items())):
                    yield t
    print(list(islice(agen(), 25))) # Michael S. Branicky, Apr 22 2024

Extensions

a(25) and beyond from Michael S. Branicky, Apr 22 2024

A372034 For a positive number k, let L(k) denote the list consisting of k followed by the prime factors of k, with repetition, in nondecreasing order; sequence gives composite k such that the digits of L(k) are in nonincreasing order.

Original entry on oeis.org

4, 8, 9, 22, 32, 33, 44, 55, 64, 77, 88, 93, 99, 422, 633, 775, 844, 933, 993, 4222, 4442, 6333, 6655, 6663, 7533, 7744, 7775, 8444, 8884, 9663, 9993, 44222, 66333, 88444, 99633, 99933, 99993, 933333, 966333, 996663, 999993, 4442222, 6663333, 7777775, 8884444, 9663333, 9666633, 9666663
Offset: 1

Views

Author

Scott R. Shannon, Apr 16 2024

Keywords

Comments

Is it true that no terms end with 1? A separate search on those shows none with < 70 digits. Michael S. Branicky, Apr 23 2024
Testing all products of repunit primes (A004022, A004023), there are no terms ending in 1 less than 10^3000. - Michael S. Branicky, Apr 24 2024

Examples

			The initial terms and their factorizations are:
4 = [2, 2]
8 = [2, 2, 2]
9 = [3, 3]
22 = [2, 11]
32 = [2, 2, 2, 2, 2]
33 = [3, 11]
44 = [2, 2, 11]
55 = [5, 11]
64 = [2, 2, 2, 2, 2, 2]
77 = [7, 11]
88 = [2, 2, 2, 11]
93 = [3, 31]
99 = [3, 3, 11]
422 = [2, 211]
633 = [3, 211]
775 = [5, 5, 31]
844 = [2, 2, 211]
933 = [3, 311]
993 = [3, 331]
4222 = [2, 2111]
4442 = [2, 2221]
6333 = [3, 2111]
6655 = [5, 11, 11, 11]
6663 = [3, 2221]
7533 = [3, 3, 3, 3, 3, 31]
7744 = [2, 2, 2, 2, 2, 2, 11, 11]
...
		

Crossrefs

Programs

  • Python
    from sympy import factorint, isprime
    def ni(s): return sorted(s, reverse=True) == list(s)
    def ok(n):
        if n < 4 or isprime(n): return False
        s, f = str(n), "".join(str(p)*e for p, e in factorint(n).items())
        return ni(s+f)
    print([k for k in range(10**6) if ok(k)]) # Michael S. Branicky, Apr 23 2024
    
  • Python
    # faster for initial segment of sequence
    from sympy import factorint, isprime
    from itertools import islice, combinations_with_replacement as mc
    def ni(s): return s == "".join(sorted(s, reverse=True))
    def bgen(d):
        yield from ("".join(m) for m in mc("987654321", d))
    def agen(): # generator of terms
        for d in range(1, 70):
            out = set()
            for s in bgen(d):
                t = int(s)
                if t < 4 or isprime(t): continue
                if ni(s+"".join(str(p)*e for p, e in factorint(t).items())):
                    out.add(t)
            yield from sorted(out)
    print(list(islice(agen(), 50))) # Michael S. Branicky, Apr 23 2024

A372280 Composite numbers k such that the digits of k are in nondecreasing order while the digits of the concatenation of k's ascending order prime factors, with repetition, are in nonincreasing order.

Original entry on oeis.org

4, 8, 9, 16, 22, 25, 27, 33, 44, 49, 55, 77, 88, 99, 125, 128, 155, 256, 279, 1477, 1555, 1688, 1899, 2799, 3479, 3577, 14777, 16888, 18999, 22599, 36799, 444577, 455777, 1112447, 1555555, 2555555, 2799999, 3577777, 3799999, 45577777, 124556677, 155555555555, 279999999999
Offset: 1

Views

Author

Scott R. Shannon, Apr 25 2024

Keywords

Comments

A number 155...555 will be a term if it has two prime factors 5 and 3111...111. Therefore 155555555555 and 1555555555555 are both terms. See A056704.
The next term is greater than 10^11.

Examples

			444577 is a term as 444577 = 7 * 7 * 43 * 211, and 444577 has nondecreasing digits while its prime factor concatenation "7743211" has nonincreasing digits.
		

Crossrefs

Programs

  • Python
    from sympy import factorint, isprime
    from itertools import count, islice, combinations_with_replacement as mc
    def ni(s): return s == "".join(sorted(s, reverse=True))
    def bgen(d):
        yield from ("".join(m) for m in mc("0123456789", d) if m[0]!="0")
    def agen(): # generator of terms
        for d in count(1):
            for s in bgen(d):
                t = int(s)
                if t < 4 or isprime(t): continue
                if ni("".join(str(p)*e for p,e in factorint(t).items())):
                    yield t
    print(list(islice(agen(), 41))) # Michael S. Branicky, Apr 26 2024

Extensions

a(42)-a(43) from Michael S. Branicky, Apr 26 2024

A372308 Composite numbers k such that the digits of k are in nonincreasing order while the digits of the concatenation of k's ascending order prime factors, with repetition, are in nondecreasing order.

Original entry on oeis.org

4, 6, 8, 9, 10, 20, 21, 30, 32, 40, 42, 50, 54, 60, 63, 64, 70, 72, 74, 75, 80, 81, 84, 90, 92, 94, 96, 98, 100, 111, 200, 210, 222, 300, 320, 333, 400, 420, 432, 441, 444, 500, 531, 540, 553, 554, 600, 611, 630, 632, 640, 666, 700, 711, 720, 750, 752, 800, 810, 840, 851, 864, 871, 875, 882
Offset: 1

Views

Author

Scott R. Shannon, Apr 26 2024

Keywords

Comments

As all the numbers 10,20,...,90,100 are terms, all numbers that are recursively 10 times these values are also terms as they just add an additional 2 and 5 to their parent's prime factor list.
A number 999...9998 will be a term if it has two prime factors 2 and 4999...999. Therefore 999999999999998 and 999...9998 (with 54 9's) are both terms. See A056712.

Examples

			42 is a term as 42 = 2 * 3 * 7, and 42 has nonincreasing digits while its prime factor concatenation "237" has nondecreasing digits.
		

Crossrefs

Programs

  • Python
    from sympy import factorint, isprime
    from itertools import count, islice, combinations_with_replacement as mc
    def nd(s): return s == "".join(sorted(s))
    def bgen(d):
        yield from ("".join(m) for m in mc("9876543210", d) if m[0]!="0")
    def agen(): # generator of terms
        for d in count(1):
            out = set()
            for s in bgen(d):
                t = int(s)
                if t < 4 or isprime(t): continue
                if nd("".join(str(p)*e for p,e in factorint(t).items())):
                    out.add(t)
            yield from sorted(out)
    print(list(islice(agen(), 65))) # Michael S. Branicky, Apr 26 2024

A372295 Composite numbers k such that k's prime factors are distinct, the digits of k are in nonincreasing order while the digits of the concatenation of k's ascending order prime factors are in nondecreasing order.

Original entry on oeis.org

6, 10, 21, 30, 42, 70, 74, 94, 111, 210, 222, 553, 554, 611, 851, 871, 885, 998, 5530, 5554, 7751, 8441, 8655, 9998, 85511, 95554, 99998, 9999998, 77744411, 5555555554, 7777752221, 8666666655, 755555555554, 95555555555554, 999999999999998, 5555555555555554, 8666666666666655, 755555555555555554
Offset: 1

Views

Author

Scott R. Shannon, Apr 25 2024

Keywords

Comments

A number 999...9998 will be a term if it has two prime factors 2 and 4999...999. Therefore 999999999999998 and 999...9998 (with 54 9's) are both terms. See A056712.
The next term is greater than 10^11.

Examples

			77744411 is a term as 77744411 = 233 * 333667 which has distinct prime factors, 77744411 has nonincreasing digits while its prime factor concatenation "233333667" has nondecreasing digits.
		

Crossrefs

Programs

  • Python
    from sympy import factorint, isprime
    from itertools import count, islice, combinations_with_replacement as mc
    def nd(s): return s == "".join(sorted(s))
    def bgen(d):
        yield from ("".join(m) for m in mc("9876543210", d) if m[0]!="0")
    def agen(): # generator of terms
        for d in count(1):
            out = set()
            for s in bgen(d):
                t = int(s)
                if t < 4 or isprime(t): continue
                f = factorint(t)
                if len(f) < sum(f.values()): continue
                if nd("".join(str(p) for p in f)):
                    out.add(t)
            yield from sorted(out)
    print(list(islice(agen(), 29))) # Michael S. Branicky, Apr 26 2024

Extensions

a(33)-a(38) from Michael S. Branicky, Apr 26 2024

A372151 For a positive number k, let L(k) denote the list consisting of k followed by the prime factors of k, with repetition, in nondecreasing order; sequence gives composite k such that the digits of k is either 3, 4 or 5 and the digits of L(k) are in nondecreasing order.

Original entry on oeis.org

35, 333, 335, 445, 33445, 334445, 3333335, 3334445, 3444445, 33333445, 333333335, 334444445, 3333333335, 33333334445, 333333333335, 33333333334445, 33333333444445, 444444444444445, 333333334444444445, 333334444444444445, 444444444444444445, 3333333333333444445
Offset: 1

Views

Author

Chai Wah Wu, Apr 26 2024

Keywords

Comments

Subsequence of A372029. Sequence is inspired by the observation that most terms in A372029 so far contain only the digits 3, 4 and 5.

Examples

			   35 = 5*7
  333 = 3*3*37
  335 = 5*67
  445 = 5*89
33445 = 5*6689
333333333333333333333333444444444444444444444445 = 5*66666666666666666666666688888888888888888888889
		

Crossrefs

Programs

  • Python
    from itertools import count, islice, combinations_with_replacement
    from sympy import isprime, factorint
    def A372151_gen(): # generator of terms
        for l in count(1):
            for d in combinations_with_replacement('345',l):
                a, n = d[-1], int(''.join(d))
                if not isprime(n):
                    for p in factorint(n,multiple=True):
                        s = str(p)
                        if s[0] < a or sorted(s) != list(s):
                            break
                        a = s[-1]
                    else:
                        yield n
    A372151_list = list(islice(A372151_gen(),20))
Showing 1-6 of 6 results.