cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A372432 Positive integers k such that the prime indices of k are not disjoint from the binary indices of k.

Original entry on oeis.org

3, 5, 6, 14, 15, 18, 20, 22, 27, 28, 30, 39, 42, 45, 51, 52, 54, 55, 56, 60, 63, 66, 68, 70, 75, 77, 78, 85, 87, 88, 90, 91, 95, 99, 100, 102, 104, 105, 110, 111, 114, 117, 119, 121, 123, 125, 126, 133, 135, 138, 140, 147, 150, 152, 154, 159, 162, 165, 168
Offset: 1

Views

Author

Gus Wiseman, May 03 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The binary indices of 18 are {2,5}, and the prime indices are {1,2,2}, so 18 is in the sequence.
The terms together with their prime indices begin:
    3: {2}
    5: {3}
    6: {1,2}
   14: {1,4}
   15: {2,3}
   18: {1,2,2}
   20: {1,1,3}
   22: {1,5}
   27: {2,2,2}
   28: {1,1,4}
   30: {1,2,3}
The terms together with their binary expansions and binary indices begin:
    3:      11 ~ {1,2}
    5:     101 ~ {1,3}
    6:     110 ~ {2,3}
   14:    1110 ~ {2,3,4}
   15:    1111 ~ {1,2,3,4}
   18:   10010 ~ {2,5}
   20:   10100 ~ {3,5}
   22:   10110 ~ {2,3,5}
   27:   11011 ~ {1,2,4,5}
   28:   11100 ~ {3,4,5}
   30:   11110 ~ {2,3,4,5}
		

Crossrefs

For subset instead of overlap we have A372430.
The complement is A372431.
Equal lengths: A071814, zeros of A372441.
Equal sums: A372427, zeros of A372428.
Equal maxima: A372436, zeros of A372442.
A019565 gives Heinz number of binary indices, adjoint A048675.
A029837 gives greatest binary index, least A001511.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A061395 gives greatest prime index, least A055396.
A070939 gives length of binary expansion.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.

Programs

  • Mathematica
    bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Intersection[bix[#],prix[#]]!={}&]

A372439 Numbers k such that the least binary index of k plus the least prime index of k is odd.

Original entry on oeis.org

2, 3, 6, 7, 8, 9, 10, 13, 14, 15, 18, 19, 21, 22, 24, 26, 27, 29, 30, 32, 33, 34, 37, 38, 39, 40, 42, 43, 45, 46, 49, 50, 51, 53, 54, 56, 57, 58, 61, 62, 63, 66, 69, 70, 71, 72, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102
Offset: 1

Views

Author

Gus Wiseman, May 06 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms (center), their binary indices (left), and their prime indices (right) begin:
        {2}   2  (1)
      {1,2}   3  (2)
      {2,3}   6  (2,1)
    {1,2,3}   7  (4)
        {4}   8  (1,1,1)
      {1,4}   9  (2,2)
      {2,4}  10  (3,1)
    {1,3,4}  13  (6)
    {2,3,4}  14  (4,1)
  {1,2,3,4}  15  (3,2)
      {2,5}  18  (2,2,1)
    {1,2,5}  19  (8)
    {1,3,5}  21  (4,2)
    {2,3,5}  22  (5,1)
      {4,5}  24  (2,1,1,1)
    {2,4,5}  26  (6,1)
  {1,2,4,5}  27  (2,2,2)
  {1,3,4,5}  29  (10)
  {2,3,4,5}  30  (3,2,1)
        {6}  32  (1,1,1,1,1)
      {1,6}  33  (5,2)
      {2,6}  34  (7,1)
		

Crossrefs

Positions of odd terms in A372437.
The complement is 1 followed by A372440.
For sum (A372428, zeros A372427) we have A372586, complement A372587.
For maximum (A372442, zeros A372436) we have A372588, complement A372589.
For length (A372441, zeros A071814) we have A372590, complement A372591.
A003963 gives product of prime indices, binary A096111.
A019565 gives Heinz number of binary indices, adjoint A048675.
A029837 gives greatest binary index, least A001511.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A061395 gives greatest prime index, least A055396.
A070939 gives length of binary expansion.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.

Programs

  • Mathematica
    bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],OddQ[Min[bix[#]]+Min[prix[#]]]&]

A372440 Numbers k such that the least binary index of k plus the least prime index of k is even.

Original entry on oeis.org

4, 5, 11, 12, 16, 17, 20, 23, 25, 28, 31, 35, 36, 41, 44, 47, 48, 52, 55, 59, 60, 64, 65, 67, 68, 73, 76, 80, 83, 84, 85, 92, 95, 97, 100, 103, 108, 109, 112, 115, 116, 121, 124, 125, 127, 132, 137, 140, 143, 144, 145, 148, 149, 155, 156, 157, 164, 167, 172
Offset: 1

Views

Author

Gus Wiseman, May 06 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms (center), their binary indices (left), and their prime indices (right) begin:
          {3}   4  (1,1)
        {1,3}   5  (3)
      {1,2,4}  11  (5)
        {3,4}  12  (2,1,1)
          {5}  16  (1,1,1,1)
        {1,5}  17  (7)
        {3,5}  20  (3,1,1)
    {1,2,3,5}  23  (9)
      {1,4,5}  25  (3,3)
      {3,4,5}  28  (4,1,1)
  {1,2,3,4,5}  31  (11)
      {1,2,6}  35  (4,3)
        {3,6}  36  (2,2,1,1)
      {1,4,6}  41  (13)
      {3,4,6}  44  (5,1,1)
  {1,2,3,4,6}  47  (15)
        {5,6}  48  (2,1,1,1,1)
      {3,5,6}  52  (6,1,1)
  {1,2,3,5,6}  55  (5,3)
  {1,2,4,5,6}  59  (17)
    {3,4,5,6}  60  (3,2,1,1)
          {7}  64  (1,1,1,1,1,1)
		

Crossrefs

For sum (A372428, zeros A372427) we have A372587, complement A372586.
Positions of even terms in A372437.
The complement is 1 followed by A372439.
For length (A372441, zeros A071814) we have A372591, complement A372590.
For maximum (A372442, zeros A372436) we have A372589, complement A372588.
A003963 gives product of prime indices, binary A096111.
A019565 gives Heinz number of binary indices, adjoint A048675.
A029837 gives greatest binary index, least A001511.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A061395 gives greatest prime index, least A055396.
A070939 gives length of binary expansion.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.

Programs

  • Mathematica
    bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],EvenQ[Min[bix[#]]+Min[prix[#]]]&]

A372430 Positive integers k such that the distinct prime indices of k are a subset of the binary indices of k.

Original entry on oeis.org

1, 3, 5, 15, 27, 39, 55, 63, 85, 121, 125, 135, 169, 171, 175, 209, 243, 247, 255, 299, 375, 399, 437, 459, 507, 539, 605, 637, 725, 735, 783, 841, 867, 891, 1085, 1215, 1323, 1331, 1375, 1519, 1767, 1815, 1863, 2079, 2125, 2187, 2223, 2295, 2299, 2331, 2405
Offset: 1

Views

Author

Gus Wiseman, May 02 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Conjecture: The only number whose binary indices are a subset of its prime indices is 4100, with binary indices {3,13} and prime indices {1,1,3,3,13}. Verified up to 10,000,000.

Examples

			The prime indices of 135 are {2,2,2,3}, and the binary indices are {1,2,3,8}. Since {2,3} is a subset of {1,2,3,8}, 135 is in the sequence.
The terms together with their prime indices begin:
     1: {}
     3: {2}
     5: {3}
    15: {2,3}
    27: {2,2,2}
    39: {2,6}
    55: {3,5}
    63: {2,2,4}
    85: {3,7}
   121: {5,5}
   125: {3,3,3}
The terms together with their binary expansions and binary indices begin:
     1:              1 ~ {1}
     3:             11 ~ {1,2}
     5:            101 ~ {1,3}
    15:           1111 ~ {1,2,3,4}
    27:          11011 ~ {1,2,4,5}
    39:         100111 ~ {1,2,3,6}
    55:         110111 ~ {1,2,3,5,6}
    63:         111111 ~ {1,2,3,4,5,6}
    85:        1010101 ~ {1,3,5,7}
   121:        1111001 ~ {1,4,5,6,7}
   125:        1111101 ~ {1,3,4,5,6,7}
		

Crossrefs

The version for equal lengths is A071814, zeros of A372441.
The version for equal sums is A372427, zeros of A372428.
For disjoint instead of subset we have A372431, complement A372432.
The version for equal maxima is A372436, zeros of A372442.
A019565 gives Heinz number of binary indices, adjoint A048675.
A029837 gives greatest binary index, least A001511.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A061395 gives greatest prime index, least A055396.
A070939 gives length of binary expansion.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[1000],SubsetQ[bix[#],prix[#]]&]

Formula

Row k of A304038 is a subset of row k of A048793.
Showing 1-4 of 4 results.