cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A194471 E.g.f. A(x) satisfies A(x) = exp(x) + x*A(x)^2.

Original entry on oeis.org

1, 2, 9, 79, 1065, 19401, 445933, 12389021, 403897553, 15120448273, 639345572181, 30138682861365, 1567316344601593, 89137628104427033, 5503952108613407933, 366697176991277153341, 26220726323043177903009, 2002962250253424509250081
Offset: 0

Views

Author

Paul D. Hanna, Aug 24 2011

Keywords

Comments

The radius of convergence r of the e.g.f. satisfies: r = exp(-r)/4 = limit (n+1)*a(n)/a(n+1) = 0.203888354702240... with A(r) = 1/(2*r) = 2.452322501352287...

Examples

			E.g.f.: A(x) = 1 + 2*x + 9*x^2/2! + 79*x^3/3! + 1065*x^4/4! +...
Related expansion:
A(x)^2 = 1 + 4*x + 26*x^2/2! + 266*x^3/3! + 3880*x^4/4! + 74322*x^5/5! +...
Illustrate the recurrence:
a(2) = 1 + 2*(1*1*2 + 1*2*1) = 1 + 2*4 = 9;
a(3) = 1 + 3*(1*1*9 + 2*2*2 + 1*9*1) = 1 + 3*26 = 79;
a(4) = 1 + 4*(1*1*79 + 3*2*9 + 3*9*2 + 1*79*1) = 1 + 4*266 = 1065;
a(5) = 1 + 5*(1*1*1065 + 4*2*79 + 6*9*9 + 4*79*2 + 1*1065*1) = 1 + 5*3880 = 19401.
		

Crossrefs

Programs

  • Mathematica
    f[0] = 1; f[n_] := f[n] = 1 + n*Sum[ Binomial[n - 1, k]*f[k]*f[n - 1 - k] , {k, 0, n - 1}]; Array[f, 18, 0] (* Robert G. Wilson v, Aug 25 2011 *)
  • Maxima
    a(n):=n!*sum((k+1)^(n-k-1)*binomial(2*k,k)/(n-k)!,k,0,n); /* Vladimir Kruchinin, Sep 01 2014 */
  • PARI
    {a(n)=n!*polcoeff((1 - sqrt(1 - 4*x*exp(x +O(x^(n+2))))) / (2*x),n)}
    
  • PARI
    {a(n)=1+n*sum(k=0,n-1,binomial(n-1,k)*a(k)*a(n-1-k))}
    

Formula

E.g.f.: A(x) = (1 - sqrt(1 - 4*x*exp(x))) / (2*x).
a(n) = 1 + n*Sum_{k=0..n-1} C(n-1,k)*a(k)*a(n-1-k) for n>=0.
a(n) ~ sqrt(2)*sqrt(1+LambertW(1/4))*n^(n-1)/(4*exp(n)*LambertW(1/4)^(n+1)). - Vaclav Kotesovec, Aug 19 2013
a(n) = n! * Sum_{k=0..n} (k+1)^(n-k-1) * binomial(2*k,k)/(n-k)!. - Vladimir Kruchinin, Sep 01 2014

A371318 E.g.f. satisfies A(x) = exp(x) + x*A(x)^3.

Original entry on oeis.org

1, 2, 13, 190, 4345, 135346, 5345749, 256004974, 14416470961, 933597699202, 68358972056221, 5584583237569150, 503607231488672425, 49690178089937051122, 5325031693664693833957, 615922452708451717999726, 76479190243720703567763553
Offset: 0

Views

Author

Seiichi Manyama, Mar 18 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! Sum[(2 k + 1)^(n - k - 1)*Binomial[3 k, k]/(n - k)!, {k, 0, n}], {n, 0, 20}] (* Wesley Ivan Hurt, May 25 2024 *)
  • PARI
    a(n) = n!*sum(k=0, n, (2*k+1)^(n-k-1)*binomial(3*k, k)/(n-k)!);

Formula

a(n) = n! * Sum_{k=0..n} (2*k+1)^(n-k-1) * binomial(3*k,k)/(n-k)!.
a(n) ~ sqrt(1 + LambertW(8/27)) * 2^n * n^(n-1) / (3 * exp(n) * LambertW(8/27)^(n + 1/2)). - Vaclav Kotesovec, Jun 01 2024

A377743 E.g.f. satisfies A(x) = exp(x) / (1 - x * A(x))^3.

Original entry on oeis.org

1, 4, 43, 853, 25141, 989581, 48885187, 2910389875, 202958554057, 16233163690537, 1465257396236551, 147359765665925143, 16341437664329027389, 1981169884084699982701, 260701144663332062732491, 37007345616327485166160651, 5637148375602304430334748945, 917186940500490837457393476817
Offset: 0

Views

Author

Seiichi Manyama, Nov 06 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, (k+1)^(n-k-1)*binomial(4*k+2, k)/(n-k)!);

Formula

a(n) = n! * Sum_{k=0..n} (k+1)^(n-k-1) * binomial(4*k+2,k)/(n-k)!.

A380724 E.g.f. A(x) satisfies A(x) = exp(x * A(x)^3) / (1 - x*A(x)^3).

Original entry on oeis.org

1, 2, 29, 862, 39461, 2454296, 193406953, 18475039808, 2075062993865, 268013104242688, 39139481641977461, 6377306725457207552, 1147019426037344539501, 225728971809041691392000, 48248339461852786811399489, 11131014193619108036340637696, 2756799306857952163745291500433
Offset: 0

Views

Author

Seiichi Manyama, Jan 30 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, (3*n+1)^(k-1)*binomial(4*n-k, n-k)/k!);

Formula

a(n) = n! * Sum_{k=0..n} (3*n+1)^(k-1) * binomial(4*n-k,n-k)/k!.

A377889 E.g.f. A(x) satisfies A(x) = exp(x * A(x))/(1 - x*A(x)^3).

Original entry on oeis.org

1, 2, 21, 472, 16581, 795736, 48509641, 3589729760, 312603962985, 31321633489408, 3549706188092541, 448973808123051520, 62697159481460439469, 9581292408000225087488, 1590488540940006100524657, 284993765391981838318575616, 54826610288277007690469896017
Offset: 0

Views

Author

Seiichi Manyama, Nov 10 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, (3*n-2*k+1)^(k-1)*binomial(4*n-3*k, n-k)/k!);

Formula

a(n) = n! * Sum_{k=0..n} (3*n-2*k+1)^(k-1) * binomial(4*n-3*k,n-k)/k!.
Showing 1-5 of 5 results.