A377473
Distinct first differences of Colombian or self numbers (A377472), listed in the order they appear.
Original entry on oeis.org
2, 11, 15, 28, 41, 54, 67, 80, 93, 106, 119, 101, 118, 131, 144, 157, 170, 183, 196, 209, 24, 90, 204, 221, 234, 247, 260, 273, 286, 299, 35, 79, 294, 307, 324, 337, 350, 363, 376, 389, 46, 68, 384, 397, 410, 427, 440, 453, 466, 479, 57, 474, 487, 500
Offset: 1
A377472(n) = 2 = a(1) for all n <= 4. Then, A377472(n) = 11 = a(2) up to n = 13.
Then again, A377472(14..23) = (2, 11, ..., 11) and similarly up to n = 94.
But A377472(103) = 15 = a(3). Then the previous pattern repeats, with A377472(n) = 2 for n = 112, 122, ..., 192, followed by A377472(n) = 15 at n = 201, 299, 397, ..., 887.
Then A377472(984) = 28 = a(4), and it goes on with A377472(n) = 2 at n = 992, 1002, ..., 1072, and so on, with A377472(n) = 28 at n = 1962, 2940, 3918, ..., 8808.
Then A377472(9785) = 41 = a(5), and the whole previous pattern repeats, with A377472(9881) = 15, then A377472(10762) = 28 etc.
At n = 97786, we find A377472(n) = 54 = a(6), and again the whole previous pattern repeats again 8 more times, each time separated by a 54, until we have, at n = 977787, A377472(n) = 67 = a(7). And so on.
-
A377473_upto(N=9, show=1)={my(o, c, d, L=List()); for(n=1+o=1, oo, is_A003052(n)||next; c++; if(!setsearch(L, d=n-o), show && printf("%d, ",[c,d]); listput(L,d); #L
A377474
Indices where new terms arise among first differences of Colombian or self numbers (A377472).
Original entry on oeis.org
1, 5, 103, 984, 9785, 97786, 977787, 9777788, 97777789
Offset: 1
The first value, A377472(1) = 2, appears obviously at index a(1) = 1.
The next three values are the same, but at index a(2) = 5 we have a new, distinct value A377472(5) = 11 = A377423(2).
The next distinct value is A377472(103) = 15 = A377423(3), so a(3) = 103.
Then the next new value is A377472(984) = 28 = A377423(4), so a(4) = 984.
The next new value is A377472(9785) = 41 = A377423(5), so a(5) = 9785.
Then, at n = 97786 = a(6), we have A377472(n) = 54 = A377423(6).
Only at n = 977787 = a(7), we have a new value, A377472(n) = 67 = A377423(7).
At n = 9777788 = a(8), we have the next new value, A377472(n) = 80 = A377423(8).
-
A377473_upto(N=9, show=1)={my(o, c, d, L=List()); for(n=1+o=1, oo, is_A003052(n)||next; c++; if(!setsearch(L, d=n-o), show && printf("%d, ",[c,d]); listput(L,c); #L
A003052
Self numbers or Colombian numbers (numbers that are not of the form m + sum of digits of m for any m).
Original entry on oeis.org
1, 3, 5, 7, 9, 20, 31, 42, 53, 64, 75, 86, 97, 108, 110, 121, 132, 143, 154, 165, 176, 187, 198, 209, 211, 222, 233, 244, 255, 266, 277, 288, 299, 310, 312, 323, 334, 345, 356, 367, 378, 389, 400, 411, 413, 424, 435, 446, 457, 468, 479, 490, 501, 512, 514, 525
Offset: 1
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 2.24.
- Martin Gardner, Time Travel and Other Mathematical Bewilderments. Freeman, NY, 1988, p. 116.
- V. S. Joshi, A note on self-numbers. Volume dedicated to the memory of V. Ramaswami Aiyar. Math. Student, Vol. 39 (1971), pp. 327-328. MR0330032 (48 #8371).
- D. R. Kaprekar, Puzzles of the Self-Numbers. 311 Devlali Camp, Devlali, India, 1959.
- D. R. Kaprekar, The Mathematics of the New Self Numbers, Privately Printed, 311 Devlali Camp, Devlali, India, 1963.
- D. R. Kaprekar, The Mathematics of the New Self Numbers (Part V). 311 Devlali Camp, Devlali, India, 1967.
- Bernardo Recamán, The Bogota Puzzles, Dover Publications, Inc., 2020, chapter 36, p. 33.
- József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 4, pp. 384-386.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Author?, J. Recreational Math., vol. 23, no. 1, p. 244, 1991.
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Max A. Alekseyev and N. J. A. Sloane, On Kaprekar's Junction Numbers, arXiv:2112.14365, 2021; Journal of Combinatorics and Number Theory 12:3 (2022), 115-155.
- Christian N. K. Anderson, Ulam Spiral of the first 5000 self numbers.
- Santanu Bandyopadhyay, Self-Number, Indian Institute of Technology Bombay (Mumbai, India, 2020).
- Santanu Bandyopadhyay, Self-Number, Indian Institute of Technology Bombay (Mumbai, India, 2020). [Local copy]
- Martin Gardner and N. J. A. Sloane, Correspondence, 1973-74
- Rosalind Guaraldo, On the Density of the Image Sets of Certain Arithmetic Functions - II, The Fibonacci Quarterly, Vol. 16, No. 5 (1978), pp. 481-488.
- Shyam Sunder Gupta, On Some Marvellous Numbers of Kaprekar, Exploring the Beauty of Fascinating Numbers, Springer (2025) Ch. 9, 275-315.
- D. R. Kaprekar, The Mathematics of the New Self Numbers, 1963. [annotated and scanned]
- Andrzej Makowski, On Kaprekar's "junction numbers", Math. Student, Vol. 34, No. 2 (1966), p. 77. MR0223292 (36 #6340); entire issue.
- A. Narasinga Rao, On a technique for obtaining numbers with a multiplicity of generators, Math. Student, Vol. 34, No. 2 (1966), pp. 79-84. MR0229573 (37 #5147); entire issue.
- Bernardo Recamán, Problem E2408, Amer. Math. Monthly, Vol. 80, No. 4 (1973), p. 434; Colombian Numbers, solution to Problem E2408 by D. W. Bange, ibid., Vol. 81, No. 4 (1974), p. 407.
- Giovanni Resta, Self or Colombian numbers, Numbersaplenty, 2013.
- Richard Schorn, Kaprekar's Sequence and his "Selfnumbers", DERIVE Newsletter, #53 (2004), pp. 30-32.
- Walter Schneider, Self Numbers, 2000-2003.
- Walter Schneider, Self Numbers, 2000-2003 (unpublished; local copy)
- N. J. A. Sloane, Martin Gardner and D. R. Kaprekar, Correspondence, 1974 [Scanned letters]
- Terry Trotter, Charlene Numbers
- Eric Weisstein's World of Mathematics, Self Number.
- Wikipedia, Self number.
- U. Zannier, On the distribution of self-numbers, Proc. Amer. Math. Soc., Vol. 85, No. 1 (1982), pp. 10-14.
- Index entries for Colombian or self numbers and related sequences
For self primes, i.e., self numbers which are primes, see
A006378.
Cf.
A247104 (subsequence of squarefree terms).
Cf.
A377472 for first differences,
A377474 for indices where new differences appear.
-
a003052 n = a003052_list !! (n-1)
a003052_list = filter ((== 0) . a230093) [1..]
-- Reinhard Zumkeller, Oct 11 2013, Aug 21 2011
-
isA003052 := proc(n) local k ; for k from 0 to n do if k+A007953(k) = n then RETURN(false): fi; od: RETURN(true) ; end:
A003052 := proc(n) option remember; if n = 1 then 1; else for a from procname(n-1)+1 do if isA003052(a) then RETURN(a) ; fi; od; fi; end: # R. J. Mathar, Jul 27 2009
-
nn = 525; Complement[Range[nn], Union[Table[n + Total[IntegerDigits[n]], {n, nn}]]] (* T. D. Noe, Mar 31 2013 *)
-
is_A003052(n)={for(i=1,min(n\2,9*#digits(n)), sumdigits(n-i)==i && return); n} \\ M. F. Hasler, Mar 20 2011, updated Nov 08 2018
-
is(n) = {if(n < 30, return((n < 10 && n%2 == 1) || n == 20)); qd = 1 + logint(n, 10); r = 1 + (n-1)%9; h = (r + 9 * (r%2))/2; ld = 10; while(h + 9*qd >= n % ld, ld*=10); vs = vecsum(digits(n \ ld)); n %= ld; for(i = 0, qd, if(vs + vecsum(digits(n - h - 9*i)) == h + 9*i, return(0))); 1} \\ David A. Corneth, Aug 20 2020
A377423
Distinct values of the number of integers between consecutive self numbers (A163139), in order of occurrence.
Original entry on oeis.org
1, 10, 14, 27, 40, 53, 66, 79, 92, 105, 118, 100, 117, 130, 143, 156, 169, 182, 195, 208, 23, 89, 203, 220, 233, 246, 259, 272, 285, 298, 34, 78, 293, 306, 323, 336, 349, 362, 375, 388, 45, 67, 383, 396, 409, 426, 439, 452, 465, 478, 56, 473, 486, 499
Offset: 1
Between the first 2 self numbers 1 and 3, there is 1 integer. So 1 is in the sequence
The next new gap is between 9 and 20, with 10 integers, so 10 is in the sequence.
The next new gap is between 1006 and 1021, with 14 integers, so 14 is in the sequence.
Showing 1-4 of 4 results.
Comments