A377530
Expansion of e.g.f. 1/(1 - x * exp(x))^3.
Original entry on oeis.org
1, 3, 18, 141, 1380, 16095, 217458, 3335745, 57225528, 1085066523, 22526087070, 508042140573, 12367076890644, 323130848000727, 9018976230237834, 267789942962863065, 8427492557547704688, 280194087519310655667, 9813332205452943323190, 361109786425470021564021
Offset: 0
-
nmax=19; CoefficientList[Series[1/(1 - x * Exp[x])^3,{x,0,nmax}],x]Range[0,nmax]! (* Stefano Spezia, Feb 05 2025 *)
-
a(n) = n!*sum(k=0, n, k^(n-k)*binomial(k+2, 2)/(n-k)!);
A379933
Expansion of e.g.f. 1/( exp(-x) - x )^2.
Original entry on oeis.org
1, 4, 22, 158, 1408, 15002, 186100, 2634998, 41937136, 741170834, 14402727484, 305225470046, 7005711916840, 173134991854970, 4583675648417044, 129424786945875398, 3882446011526729440, 123304773913531035170, 4133369745467043807340, 145840627118145774415214
Offset: 0
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(exp(-x)-x)^2))
-
a(n) = n!*sum(k=0, n, (k+1)*(k+2)^(n-k)/(n-k)!);
A379993
Expansion of e.g.f. 1/(1 - x * exp(x))^4.
Original entry on oeis.org
1, 4, 28, 252, 2776, 35940, 533304, 8908228, 165247072, 3368072196, 74782987240, 1796037420804, 46379441090448, 1281203788073092, 37694510810334616, 1176606639075726660, 38833052393329645504, 1351066066253778043908, 49417629820950190273992
Offset: 0
-
nmax=18;CoefficientList[Series[1/(1 - x * Exp[x])^4,{x,0,nmax}],x]Range[0,nmax]! (* Stefano Spezia, Feb 05 2025 *)
-
a(n) = n!*sum(k=0, n, k^(n-k)*binomial(k+3, 3)/(n-k)!);
A377527
E.g.f. satisfies A(x) = 1/(1 - x * exp(x) * A(x)^2)^2.
Original entry on oeis.org
1, 2, 26, 618, 22256, 1081770, 66401532, 4931389358, 430108545680, 43104305664594, 4881518010253460, 616559703960596022, 85935621525038617752, 13102417265843584412474, 2169337115977056447577820, 387609934848899388554651550, 74340899731294447790784890912
Offset: 0
A380841
Array read by ascending antidiagonals: A(n,k) = n! * [x^n] 1/(1 - x*exp(x))^k.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 4, 2, 1, 0, 21, 10, 3, 1, 0, 148, 66, 18, 4, 1, 0, 1305, 560, 141, 28, 5, 1, 0, 13806, 5770, 1380, 252, 40, 6, 1, 0, 170401, 69852, 16095, 2776, 405, 54, 7, 1, 0, 2403640, 970886, 217458, 35940, 4940, 606, 70, 8, 1, 0, 38143377, 15228880, 3335745, 533304, 70045, 8088, 861, 88, 9, 1
Offset: 0
Array begins as:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 4, 10, 18, 28, 40, 54, ...
0, 21, 66, 141, 252, 405, 606, ...
0, 148, 560, 1380, 2776, 4940, 8088, ...
0, 1305, 5770, 16095, 35940, 70045, 124350, ...
...
-
A[n_,k_]:=n!SeriesCoefficient[1/(1-x*Exp[x])^k,{x,0,n}]; Table[A[n-k,k],{n,0,10},{k,0,n}]//Flatten
A379990
Expansion of e.g.f. exp(-2*x)/(exp(-x) - x)^3.
Original entry on oeis.org
1, 4, 25, 205, 2065, 24601, 337837, 5249581, 91006657, 1740663937, 36402220141, 826159146253, 20220201899377, 530828186303377, 14878044338021677, 443397290411503021, 14000282854007503105, 466866129420834410881, 16395362179348570608205, 604794784980600986425645
Offset: 0
A379992
Expansion of e.g.f. exp(-3*x)/(exp(-x) - x)^2.
Original entry on oeis.org
1, 1, 7, 41, 349, 3539, 42451, 585605, 9130297, 158692679, 3041499871, 63712004729, 1447946191957, 35479218963083, 932326476195115, 26153289728300909, 779995883104560241, 24644267406802467215, 822278654588440803511, 28891372907012629446881
Offset: 0
-
With[{nn=20},CoefficientList[Series[Exp[-3x]/(Exp[-x]-x)^2,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jun 14 2025 *)
-
a(n) = n!*sum(k=0, n, (k+1)*(k-1)^(n-k)/(n-k)!);
A379997
Expansion of e.g.f. 1/(exp(x) - x*exp(2*x))^2.
Original entry on oeis.org
1, 0, 6, 22, 224, 2138, 25732, 351846, 5458224, 94441042, 1803255404, 37652268014, 853321021192, 20858236815258, 546941712302052, 15313467390967222, 455933682027961184, 14383416438784605602, 479254037890010238172, 16817855455956128823486, 619953003446894086537656
Offset: 0
Showing 1-8 of 8 results.