cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A192858 Hosoya indices of the 2n-wheel graphs W_{2n}.

Original entry on oeis.org

2, 10, 36, 120, 382, 1178, 3550, 10514, 30720, 88788, 254342, 723190, 2043386, 5742490, 16062492, 44744688, 124192270, 343594514, 947857750, 2608015778, 7159034232, 19609583820, 53608363286, 146290947310, 398552156402, 1084153113898, 2944982283540, 7989231439464, 21646950044830, 58585895022218, 158389325993422
Offset: 1

Views

Author

Eric W. Weisstein, Jul 11 2011

Keywords

Comments

Wheel graphs are defined for n >= 4; extended to n=2 using recurrence.
Binomial transform of A120940 multiplied by 2. - R. J. Mathar, Jul 11 2011

Programs

  • Magma
    I:=[2,10,36,120]; [n le 4 select I[n] else 6*Self(n-1)-11*Self(n-2)+6*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Aug 31 2011
    
  • Mathematica
    LinearRecurrence[{6, -11, 6, -1}, {10, 36, 120, 382}, {0, 30}]
  • PARI
    x='x+O('x^30); Vec(2*x*(1+x)*(x-1)^2/((x^2-3*x+1)^2)) \\ G. C. Greubel, Nov 10 2018

Formula

a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) - a(n-4).
G.f.: 2*x*(1+x)*(x-1)^2 / ( (x^2 - 3*x + 1)^2 ). - R. J. Mathar, Jul 11 2011
a(n) = ((3+r)^n*((5-r)*n+3*r-5) + (3-r)^n*((5+r)*n-3*r-5))/(5*2^n) with r=sqrt(5). - Bruno Berselli, Aug 31 2011
a(n) = 2*A377857(n+2). - R. J. Mathar, Dec 16 2024

A378383 Number of subwords of the form UDDD in nondecreasing Dyck paths of length 2*n.

Original entry on oeis.org

0, 0, 0, 1, 5, 19, 64, 202, 612, 1803, 5206, 14809, 41650, 116114, 321478, 885169, 2426462, 6627499, 18048088, 49026874, 132901176, 359625015, 971639014, 2621683741, 7065545950, 19022080034, 51163908874, 137499581917, 369235213742, 990822728623, 2657069356996
Offset: 0

Views

Author

Rigoberto Florez, Nov 24 2024

Keywords

Comments

A Dyck path is nondecreasing if the y-coordinates of its valleys form a nondecreasing sequence.

Crossrefs

Programs

  • Mathematica
    Table[If[n < 3, 0, (1/5)((n-3)LucasL[2n-5]+LucasL[2n-3]+Fibonacci[2n+2]-5(n+5) 2^(n-4))], {n,0,26}]

Formula

a(n) =((n-3)*L(2n-5)+L(2n-3)+F(2n+2) -5*(n+5)*2^(n-4))/5 for n>=3, where F(n) = A000045(n) and L(n) = A000032(n).
G.f.: (-x^5+2 x^4-5 x^3+8 x^2-5 x+1)*x^3/(2 x^3-7 x^2+5 x-1)^2.
Showing 1-2 of 2 results.