cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A020829 Decimal expansion of 1/sqrt(72) = 1/(3*2^(3/2)) = sqrt(2)/12.

Original entry on oeis.org

1, 1, 7, 8, 5, 1, 1, 3, 0, 1, 9, 7, 7, 5, 7, 9, 2, 0, 7, 3, 3, 4, 7, 4, 0, 6, 0, 3, 5, 0, 8, 0, 8, 1, 7, 3, 2, 1, 4, 1, 3, 9, 3, 2, 2, 9, 4, 8, 0, 7, 9, 0, 0, 6, 0, 9, 8, 0, 5, 6, 6, 4, 4, 8, 3, 2, 5, 6, 1, 0, 3, 9, 8, 7, 1, 8, 4, 2, 2, 5, 3, 2, 3, 7, 5, 3, 2, 2, 9, 4, 5, 2, 7, 3, 0, 3, 4, 6, 4
Offset: 0

Views

Author

Keywords

Comments

Volume of regular tetrahedron with unit edge. - Stanislav Sykora, May 31 2012
In the dragon curve fractal, (5/6)*sqrt(2) = 1.1785.... is the maximum distance of any point from curve start. Such a maximum must be to a vertex of the convex hull. Hull vertices are shown by Benedek and Panzone (theorem 3, page 85) and their P8 = 7/6 - (1/6)i at distance sqrt((7/6)^2 + (1/6)^2) is the maximum. - Kevin Ryde, Nov 22 2019
With offset 1, volume of a triangular cupola (Johnson solid J_3) with unit edges. - Paolo Xausa, Aug 04 2025

Examples

			0.117851130197757920733474...
		

References

  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §12.4 Theorems and Formulas (Solid Geometry), p. 450.

Crossrefs

Cf. A131594 (regular octahedron volume), A102208 (regular icosahedron volume), A102769 (regular dodecahedron volume).

Programs

Formula

Equals Integral_{x=0..Pi/4} sin(x)^2 * cos(x) dx. - Amiram Eldar, May 31 2021
Equals 1/A010524 = A020765/3 = A020775/2 = A378207/5. - Hugo Pfoertner, Jan 26 2025

A378204 Decimal expansion of the surface area of a triakis tetrahedron with unit shorter edge length.

Original entry on oeis.org

5, 5, 2, 7, 7, 0, 7, 9, 8, 3, 9, 2, 5, 6, 6, 6, 4, 1, 5, 1, 9, 1, 5, 5, 4, 5, 6, 1, 1, 1, 7, 8, 1, 1, 1, 3, 9, 8, 7, 8, 4, 8, 0, 9, 0, 9, 3, 1, 5, 5, 8, 9, 3, 2, 8, 4, 3, 1, 1, 3, 6, 9, 1, 0, 1, 9, 4, 1, 4, 1, 0, 7, 1, 0, 1, 5, 0, 7, 3, 0, 7, 7, 8, 4, 8, 0, 7, 2, 3, 3
Offset: 1

Views

Author

Paolo Xausa, Nov 20 2024

Keywords

Comments

The triakis tetrahedron is the dual polyhedron of the truncated tetrahedron.

Examples

			5.5277079839256664151915545611178111398784809093...
		

Crossrefs

Cf. A378205 (volume), A378206 (inradius), A378207 (midradius), A378208 (dihedral angle).
Cf. A377274 (surface area of a truncated tetrahedron with unit edge).
Cf. A010468.

Programs

  • Mathematica
    First[RealDigits[5*Sqrt[11]/3, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["TriakisTetrahedron", "SurfaceArea"], 10, 100]]

Formula

Equals (5/3)*sqrt(11) = (5/3)*A010468.

A378205 Decimal expansion of the volume of a triakis tetrahedron with unit shorter edge length.

Original entry on oeis.org

9, 8, 2, 0, 9, 2, 7, 5, 1, 6, 4, 7, 9, 8, 2, 6, 7, 2, 7, 7, 8, 9, 5, 0, 5, 0, 2, 9, 2, 3, 4, 0, 1, 4, 4, 3, 4, 5, 1, 1, 6, 1, 0, 2, 4, 5, 6, 7, 3, 2, 5, 0, 5, 0, 8, 1, 7, 1, 3, 8, 7, 0, 6, 9, 3, 8, 0, 0, 8, 6, 6, 5, 5, 9, 8, 6, 8, 5, 4, 4, 3, 6, 4, 6, 1, 0, 2, 4, 5, 4
Offset: 0

Views

Author

Paolo Xausa, Nov 20 2024

Keywords

Comments

The triakis tetrahedron is the dual polyhedron of the truncated tetrahedron.

Examples

			0.9820927516479826727789505029234014434511610245673...
		

Crossrefs

Cf. A378204 (surface area), A378206 (inradius), A378207 (midradius), A378208 (dihedral angle).
Cf. A377275 (volume of a truncated tetrahedron with unit edge).
Cf. A002193.

Programs

  • Mathematica
    First[RealDigits[25/36*Sqrt[2], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["TriakisTetrahedron", "Volume"], 10, 100]]

Formula

Equals (25/36)*sqrt(2) = (25/36)*A002193.

A378206 Decimal expansion of the inradius of a triakis tetrahedron with unit shorter edge length.

Original entry on oeis.org

5, 3, 3, 0, 0, 1, 7, 9, 0, 8, 8, 9, 0, 2, 6, 0, 8, 5, 7, 4, 6, 0, 9, 4, 3, 3, 1, 0, 8, 4, 5, 9, 8, 4, 4, 0, 9, 7, 5, 9, 3, 5, 0, 4, 0, 1, 6, 0, 4, 2, 4, 6, 7, 6, 5, 4, 6, 1, 0, 2, 4, 8, 7, 6, 1, 5, 5, 7, 0, 9, 8, 0, 9, 9, 4, 6, 8, 6, 3, 3, 1, 9, 8, 6, 6, 0, 4, 0, 4, 5
Offset: 0

Views

Author

Paolo Xausa, Nov 21 2024

Keywords

Comments

The triakis tetrahedron is the dual polyhedron of the truncated tetrahedron.

Examples

			0.53300179088902608574609433108459844097593504016042...
		

Crossrefs

Cf. A378204 (surface area), A378205 (volume), A378207 (midradius), A378208 (dihedral angle).
Cf. A010539.

Programs

  • Mathematica
    First[RealDigits[5/Sqrt[88], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["TriakisTetrahedron", "Inradius"], 10, 100]]

Formula

Equals 5/(2*sqrt(22)) = 5/A010539.

A378208 Decimal expansion of the dihedral angle, in radians, between any two adjacent faces in a triakis tetrahedron.

Original entry on oeis.org

2, 2, 6, 0, 5, 7, 1, 3, 2, 7, 5, 8, 0, 3, 9, 6, 2, 7, 9, 3, 4, 1, 3, 5, 7, 8, 1, 1, 6, 0, 8, 6, 5, 5, 9, 6, 5, 5, 5, 5, 2, 8, 4, 1, 8, 0, 5, 3, 8, 1, 2, 6, 2, 4, 1, 4, 3, 2, 0, 8, 6, 9, 2, 9, 0, 2, 4, 3, 4, 2, 7, 6, 4, 6, 3, 1, 4, 2, 4, 7, 7, 2, 1, 0, 8, 6, 3, 9, 2, 3
Offset: 1

Views

Author

Paolo Xausa, Nov 21 2024

Keywords

Comments

The triakis tetrahedron is the dual polyhedron of the truncated tetrahedron.

Examples

			2.2605713275803962793413578116086559655552841805381...
		

Crossrefs

Cf. A378204 (surface area), A378205 (volume), A378206 (inradius), A378207 (midradius).
Cf. A137914 and A156546 (dihedral angles of a truncated tetrahedron).

Programs

  • Mathematica
    First[RealDigits[ArcCos[-7/11], 10, 100]] (* or *)
    First[RealDigits[First[PolyhedronData["TriakisTetrahedron", "DihedralAngles"]], 10, 100]]

Formula

Equals arccos(-7/11).

A380700 Decimal expansion of the acute vertex angles, in radians, in a triakis tetrahedron face.

Original entry on oeis.org

5, 8, 5, 6, 8, 5, 5, 4, 3, 4, 5, 7, 1, 5, 0, 9, 5, 9, 6, 1, 7, 7, 5, 7, 5, 3, 8, 4, 7, 7, 5, 1, 7, 7, 6, 6, 2, 0, 0, 3, 6, 1, 0, 6, 7, 1, 7, 1, 6, 4, 1, 5, 0, 2, 6, 5, 0, 5, 5, 9, 3, 2, 7, 2, 2, 1, 2, 6, 4, 9, 2, 2, 1, 3, 3, 2, 4, 0, 3, 3, 8, 8, 2, 2, 0, 0, 2, 6, 3, 3
Offset: 0

Views

Author

Paolo Xausa, Jan 30 2025

Keywords

Examples

			0.58568554345715095961775753847751776620036106717164...
		

Crossrefs

Cf. A380701 (face obtuse angle).

Programs

  • Mathematica
    First[RealDigits[ArcCos[5/6], 10, 100]]

Formula

Equals arccos(5/6).
Equals (Pi - A380701)/2.

A380701 Decimal expansion of the obtuse vertex angle, in radians, in a triakis tetrahedron face.

Original entry on oeis.org

1, 9, 7, 0, 2, 2, 1, 5, 6, 6, 6, 7, 5, 4, 9, 1, 3, 1, 9, 2, 2, 7, 1, 2, 8, 3, 0, 6, 3, 2, 4, 4, 6, 7, 3, 5, 1, 7, 9, 6, 4, 4, 7, 2, 6, 5, 0, 3, 1, 8, 2, 2, 8, 1, 5, 6, 7, 3, 8, 2, 5, 9, 3, 7, 8, 6, 5, 2, 8, 6, 5, 6, 2, 0, 1, 9, 7, 2, 8, 3, 2, 0, 9, 8, 4, 0, 2, 9, 5, 5
Offset: 1

Views

Author

Paolo Xausa, Jan 30 2025

Keywords

Examples

			1.9702215666754913192271283063244673517964472650318...
		

Crossrefs

Cf. A380700 (face acute angles).

Programs

  • Mathematica
    First[RealDigits[ArcCos[-7/18], 10, 100]]

Formula

Equals arccos(-7/18).
Equals Pi - 2*A380700.
Showing 1-7 of 7 results.