cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A379367 Numerators of the partial sums of the reciprocals of the squarefree kernel function (A007947).

Original entry on oeis.org

1, 3, 11, 7, 38, 27, 199, 117, 386, 793, 8933, 1553, 20574, 41863, 127591, 71303, 1227166, 2539417, 48759433, 24864701, 25095646, 50632187, 1174239991, 605711068, 125604071, 252924241, 267797099, 19356010, 564511331, 1891973791, 58959268151, 31867258958, 8730535499
Offset: 1

Views

Author

Amiram Eldar, Dec 21 2024

Keywords

Examples

			Fractions begin with 1, 3/2, 11/6, 7/3, 38/15, 27/10, 199/70, 117/35, 386/105, 793/210, 8933/2310, 1553/385, ...
		

References

  • Jean-Marie De Koninck and Aleksandar Ivić, Topics in Arithmetical Functions, North-Holland Publishing Company, Amsterdam, Netherlands, 1980. See pp. 16-17.

Crossrefs

Cf. A007947, A073355, A370896, A379368 (denominators), A379369.

Programs

  • Mathematica
    rad[n_] := Times @@ FactorInteger[n][[;;, 1]]; Numerator[Accumulate[Table[1/rad[n], {n, 1, 50}]]]
  • PARI
    rad(n) = vecprod(factor(n)[, 1]);
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / rad(k); print1(numerator(s), ", "))};

Formula

a(n) = numerator(Sum_{k=1..n} 1/A007947(k)).
a(n)/A379368(n) = exp((1 + o(1)) * sqrt(8*log(n)/log(log(n)))).
a(n)/A379368(n) ~ (1/2) * exp(gamma) * F(log(n)) * log(log(n)), where F(t) = (6/Pi^2) * Sum_{m>=1} min(1,exp(t)/m)/Product_{primes p|m} (p+1).

A379370 Denominators of the partial alternating sums of the reciprocals of the squarefree kernel function (A007947).

Original entry on oeis.org

1, 2, 6, 3, 15, 30, 210, 105, 35, 70, 770, 1155, 15015, 30030, 2002, 1001, 17017, 102102, 1939938, 4849845, 4849845, 9699690, 223092870, 37182145, 37182145, 74364290, 223092870, 111546435, 3234846615, 2156564410, 66853496710, 33426748355, 100280245065, 200560490130
Offset: 1

Views

Author

Amiram Eldar, Dec 21 2024

Keywords

Crossrefs

Cf. A007947, A073355, A370896, A379368, A379369 (numerators).

Programs

  • Mathematica
    rad[n_] := Times @@ FactorInteger[n][[;;, 1]]; Denominator[Accumulate[Table[(-1)^(n+1)/rad[n], {n, 1, 50}]]]
  • PARI
    rad(n) = vecprod(factor(n)[, 1]);
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / rad(k); print1(denominator(s), ", "))};

Formula

a(n) = denominator(Sum_{k=1..n} (-1)^(k+1)/A007947(k)).

A379369 Numerators of the partial alternating sums of the reciprocals of the squarefree kernel function (A007947).

Original entry on oeis.org

1, 1, 5, 1, 8, 11, 107, 1, 12, 17, 257, 193, 3664, 5183, 479, -261, -3436, -37633, -612925, -2017297, -1786352, -4013599, -82613087, -19965872, -12529443, -27919051, -9392863, -12664034, -255710551, -242359181, -5356570201, -19391659278, -55136182529, -116171203003
Offset: 1

Views

Author

Amiram Eldar, Dec 21 2024

Keywords

Examples

			Fractions begin with 1, 1/2, 5/6, 1/3, 8/15, 11/30, 107/210, 1/105, 12/35, 17/70, 257/770, 193/1155, ...
		

Crossrefs

Cf. A007947, A073355, A370896, A379367, A379368, A379370 (denominators).

Programs

  • Mathematica
    rad[n_] := Times @@ FactorInteger[n][[;;, 1]]; Numerator[Accumulate[Table[(-1)^(n+1)/rad[n], {n, 1, 50}]]]
  • PARI
    rad(n) = vecprod(factor(n)[, 1]);
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / rad(k); print1(numerator(s), ", "))};

Formula

a(n) = numerator(Sum_{k=1..n} (-1)^(k+1)/A007947(k)).
a(n)/A379370(n) ~ -A379367(n)/A379368(n).

A380315 Denominator of sum of reciprocals of all prime divisors of all positive integers <= n.

Original entry on oeis.org

1, 2, 6, 3, 15, 30, 210, 105, 35, 70, 770, 1155, 15015, 30030, 30030, 15015, 255255, 170170, 3233230, 1616615, 4849845, 9699690, 223092870, 111546435, 22309287, 44618574, 14872858, 7436429, 215656441, 6469693230, 200560490130, 100280245065, 100280245065
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 20 2025

Keywords

Comments

Prime divisors counted without multiplicity.
Differs from A379370 first at n=15.

Examples

			0, 1/2, 5/6, 4/3, 23/15, 71/30, 527/210, 316/105, 117/35, 283/70, 3183/770, 5737/1155, 75736/15015, ...
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, 1/# &, PrimeQ[#] &], {n, 1, 33}] // Accumulate // Denominator
    Table[Sum[Floor[n/Prime[k]]/Prime[k], {k, 1, n}], {n, 1, 33}] // Denominator
    nmax = 33; CoefficientList[Series[1/(1 - x) Sum[x^Prime[k]/(Prime[k] (1 - x^Prime[k])), {k, 1, nmax}], {x, 0, nmax}], x] // Denominator // Rest
  • PARI
    a(n) = my(vp=primes(primepi(n))); denominator(sum(k=1, #vp, (n\vp[k])/vp[k])); \\ Michel Marcus, Jan 26 2025

Formula

G.f. for fractions: (1/(1 - x)) * Sum_{k>=1} x^prime(k) / (prime(k)*(1 - x^prime(k))).
a(n) is the denominator of Sum_{k=1..pi(n)} floor(n/prime(k)) / prime(k).
Showing 1-4 of 4 results.