cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A237271 Number of parts in the symmetric representation of sigma(n).

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 2, 1, 3, 2, 2, 1, 2, 2, 3, 1, 2, 1, 2, 1, 4, 2, 2, 1, 3, 2, 4, 1, 2, 1, 2, 1, 4, 2, 3, 1, 2, 2, 4, 1, 2, 1, 2, 2, 3, 2, 2, 1, 3, 3, 4, 2, 2, 1, 4, 1, 4, 2, 2, 1, 2, 2, 5, 1, 4, 1, 2, 2, 4, 3, 2, 1, 2, 2, 4, 2, 3, 2, 2, 1, 5, 2, 2, 1, 4, 2, 4, 1, 2, 1
Offset: 1

Views

Author

Omar E. Pol, Feb 25 2014

Keywords

Comments

The diagram of the symmetry of sigma has been via A196020 --> A236104 --> A235791 --> A237591 --> A237593.
For more information see A237270.
a(n) is also the number of terraces at n-th level (starting from the top) of the stepped pyramid described in A245092. - Omar E. Pol, Apr 20 2016
a(n) is also the number of subparts in the first layer of the symmetric representation of sigma(n). For the definion of "subpart" see A279387. - Omar E. Pol, Dec 08 2016
Note that the number of subparts in the symmetric representation of sigma(n) equals A001227(n), the number of odd divisors of n. (See the second example). - Omar E. Pol, Dec 20 2016
From Hartmut F. W. Hoft, Dec 26 2016: (Start)
Using odd prime number 3, observe that the 1's in the 3^k-th row of the irregular triangle of A237048 are at index positions
3^0 < 2*3^0 < 3^1 < 2*3^1 < ... < 2*3^((k-1)/2) < 3^(k/2) < ...
the last being 2*3^((k-1)/2) when k is odd and 3^(k/2) when k is even. Since odd and even index positions alternate, each pair (3^i, 2*3^i) specifies one part in the symmetric representation with a center part present when k is even. A straightforward count establishes that the symmetric representation of 3^k, k>=0, has k+1 parts. Since this argument is valid for any odd prime, every positive integer occurs infinitely many times in the sequence. (End)
a(n) = number of runs of consecutive nonzero terms in row n of A262045. - N. J. A. Sloane, Jan 18 2021
Indices of odd terms give A071562. Indices of even terms give A071561. - Omar E. Pol, Feb 01 2021
a(n) is also the number of prisms in the three-dimensional version of the symmetric representation of k*sigma(n) where k is the height of the prisms, with k >= 1. - Omar E. Pol, Jul 01 2021
With a(1) = 0; a(n) is also the number of parts in the symmetric representation of A001065(n), the sum of aliquot parts of n. - Omar E. Pol, Aug 04 2021
The parity of this sequence is also the characteristic function of numbers that have middle divisors. - Omar E. Pol, Sep 30 2021
a(n) is also the number of polycubes in the 3D-version of the ziggurat of order n described in A347186. - Omar E. Pol, Jun 11 2024
Conjecture 1: a(n) is the number of odd divisors of n except the "e" odd divisors described in A005279. Thus a(n) is the length of the n-th row of A379288. - Omar E. Pol, Dec 21 2024
The conjecture 1 was checked up n = 10000 by Amiram Eldar. - Omar E. Pol, Dec 22 2024
The conjecture 1 is true. For a proof see A379288. - Hartmut F. W. Hoft, Jan 21 2025
From Omar E. Pol, Jul 31 2025: (Start)
Conjecture 2: a(n) is the number of 2-dense sublists of divisors of n.
We call "2-dense sublists of divisors of n" to the maximal sublists of divisors of n whose terms increase by a factor of at most 2.
In a 2-dense sublist of divisors of n the terms are in increasing order and two adjacent terms are the same two adjacent terms in the list of divisors of n.
Example: for n = 10 the list of divisors of 10 is [1, 2, 5, 10]. There are two 2-dense sublists of divisors of 10, they are [1, 2], [5, 10], so a(10) = 2.
The conjecture 2 is essentially the same as the second conjecture in the Comments of A384149. See also Peter Munn's formula in A237270.
The indices where a(n) = 1 give A174973 (2-dense numbers). See the proof there. (End)
Conjecture 3: a(n) is the number of divisors p of n such that p is greater than twice the adjacent previous divisor of n. The divisors p give the n-th row of A379288. - Omar E. Pol, Aug 02 2025

Examples

			Illustration of initial terms (n = 1..12):
---------------------------------------------------------
n   A000203  A237270    a(n)            Diagram
---------------------------------------------------------
.                               _ _ _ _ _ _ _ _ _ _ _ _
1       1      1         1     |_| | | | | | | | | | | |
2       3      3         1     |_ _|_| | | | | | | | | |
3       4      2+2       2     |_ _|  _|_| | | | | | | |
4       7      7         1     |_ _ _|    _|_| | | | | |
5       6      3+3       2     |_ _ _|  _|  _ _|_| | | |
6      12      12        1     |_ _ _ _|  _| |  _ _|_| |
7       8      4+4       2     |_ _ _ _| |_ _|_|    _ _|
8      15      15        1     |_ _ _ _ _|  _|     |
9      13      5+3+5     3     |_ _ _ _ _| |      _|
10     18      9+9       2     |_ _ _ _ _ _|  _ _|
11     12      6+6       2     |_ _ _ _ _ _| |
12     28      28        1     |_ _ _ _ _ _ _|
...
For n = 9 the sum of divisors of 9 is 1+3+9 = A000203(9) = 13. On the other hand the 9th set of symmetric regions of the diagram is formed by three regions (or parts) with 5, 3 and 5 cells, so the total number of cells is 5+3+5 = 13, equaling the sum of divisors of 9. There are three parts: [5, 3, 5], so a(9) = 3.
From _Omar E. Pol_, Dec 21 2016: (Start)
Illustration of the diagram of subparts (n = 1..12):
---------------------------------------------------------
n   A000203  A279391  A001227           Diagram
---------------------------------------------------------
.                               _ _ _ _ _ _ _ _ _ _ _ _
1       1      1         1     |_| | | | | | | | | | | |
2       3      3         1     |_ _|_| | | | | | | | | |
3       4      2+2       2     |_ _|  _|_| | | | | | | |
4       7      7         1     |_ _ _|  _ _|_| | | | | |
5       6      3+3       2     |_ _ _| |_|  _ _|_| | | |
6      12      11+1      2     |_ _ _ _|  _| |  _ _|_| |
7       8      4+4       2     |_ _ _ _| |_ _|_|  _ _ _|
8      15      15        1     |_ _ _ _ _|  _|  _| |
9      13      5+3+5     3     |_ _ _ _ _| |  _|  _|
10     18      9+9       2     |_ _ _ _ _ _| |_ _|
11     12      6+6       2     |_ _ _ _ _ _| |
12     28      23+5      2     |_ _ _ _ _ _ _|
...
For n = 6 the symmetric representation of sigma(6) has two subparts: [11, 1], so A000203(6) = 12 and A001227(6) = 2.
For n = 12 the symmetric representation of sigma(12) has two subparts: [23, 5], so A000203(12) = 28 and A001227(12) = 2. (End)
From _Hartmut F. W. Hoft_, Dec 26 2016: (Start)
Two examples of the general argument in the Comments section:
Rows 27 in A237048 and A249223 (4 parts)
i:  1  2 3 4 5 6 7 8 9 . . 12
27: 1  1 1 0 0 1                           1's in A237048 for odd divisors
    1 27 3     9                           odd divisors represented
27: 1  0 1 1 1 0 0 1 1 1 0 1               blocks forming parts in A249223
Rows 81 in A237048 and A249223 (5 parts)
i:  1  2 3 4 5 6 7 8 9 . . 12. . . 16. . . 20. . . 24
81: 1  1 1 0 0 1 0 0 1 0 0 0                          1's in A237048 f.o.d
    1 81 3    27     9                                odd div. represented
81: 1  0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 1  blocks fp in A249223
(End)
		

Crossrefs

Programs

  • Mathematica
    a237271[n_] := Length[a237270[n]] (* code defined in A237270 *)
    Map[a237271, Range[90]] (* data *)
    (* Hartmut F. W. Hoft, Jun 23 2014 *)
    a[n_] := Module[{d = Partition[Divisors[n], 2, 1]}, 1 + Count[d, ?(OddQ[#[[2]]] && #[[2]] >= 2*#[[1]] &)]]; Array[a, 100] (* _Amiram Eldar,  Dec 22 2024 *)
  • PARI
    fill(vcells, hga, hgb) = {ic = 1; for (i=1, #hgb, if (hga[i] < hgb[i], for (j=hga[i], hgb[i]-1, cell = vector(4); cell[1] = i - 1; cell[2] = j; vcells[ic] = cell; ic ++;););); vcells;}
    findfree(vcells) = {for (i=1, #vcells, vcelli = vcells[i]; if ((vcelli[3] == 0) && (vcelli[4] == 0), return (i));); return (0);}
    findxy(vcells, x, y) = {for (i=1, #vcells, vcelli = vcells[i]; if ((vcelli[1]==x) && (vcelli[2]==y) && (vcelli[3] == 0) && (vcelli[4] == 0), return (i));); return (0);}
    findtodo(vcells, iz) = {for (i=1, #vcells, vcelli = vcells[i]; if ((vcelli[3] == iz) && (vcelli[4] == 0), return (i)); ); return (0);}
    zcount(vcells) = {nbz = 0; for (i=1, #vcells, nbz = max(nbz, vcells[i][3]);); nbz;}
    docell(vcells, ic, iz) = {x = vcells[ic][1]; y = vcells[ic][2]; if (icdo = findxy(vcells, x-1, y), vcells[icdo][3] = iz); if (icdo = findxy(vcells, x+1, y), vcells[icdo][3] = iz); if (icdo = findxy(vcells, x, y-1), vcells[icdo][3] = iz); if (icdo = findxy(vcells, x, y+1), vcells[icdo][3] = iz); vcells[ic][4] = 1; vcells;}
    docells(vcells, ic, iz) = {vcells[ic][3] = iz; while (ic, vcells = docell(vcells, ic, iz); ic = findtodo(vcells, iz);); vcells;}
    nbzb(n, hga, hgb) = {vcells = vector(sigma(n)); vcells = fill(vcells, hga, hgb); iz = 1; while (ic = findfree(vcells), vcells = docells(vcells, ic, iz); iz++;); zcount(vcells);}
    lista(nn) = {hga = concat(heights(row237593(0), 0), 0); for (n=1, nn, hgb = heights(row237593(n), n); nbz = nbzb(n, hga, hgb); print1(nbz, ", "); hga = concat(hgb, 0););} \\ with heights() also defined in A237593; \\ Michel Marcus, Mar 28 2014
    
  • Python
    from sympy import divisors
    def a(n: int) -> int:
        divs = list(divisors(n))
        d = [divs[i:i+2] for i in range(len(divs) - 1)]
        s = sum(1 for pair in d if len(pair) == 2 and pair[1] % 2 == 1 and pair[1] >= 2 * pair[0])
        return s + 1
    print([a(n) for n in range(1, 80)])  # Peter Luschny, Aug 05 2025

Formula

a(n) = A001227(n) - A239657(n). - Omar E. Pol, Mar 23 2014
a(p^k) = k + 1, where p is an odd prime and k >= 0. - Hartmut F. W. Hoft, Dec 26 2016
Theorem: a(n) <= number of odd divisors of n (cf. A001227). The differences are in A239657. - N. J. A. Sloane, Jan 19 2021
a(n) = A340846(n) - A340833(n) + 1 (Euler's formula). - Omar E. Pol, Feb 01 2021
a(n) = A000005(n) - A243982(n). - Omar E. Pol, Aug 02 2025

A379288 Irregular triangle read by rows in which row n lists the odd divisors of n excluding odd divisors e for which there exists another divisor j with j < e < 2*j.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 5, 1, 1, 7, 1, 1, 3, 9, 1, 5, 1, 11, 1, 1, 13, 1, 7, 1, 3, 15, 1, 1, 17, 1, 1, 19, 1, 1, 3, 7, 21, 1, 11, 1, 23, 1, 1, 5, 25, 1, 13, 1, 3, 9, 27, 1, 1, 29, 1, 1, 31, 1, 1, 3, 11, 33, 1, 17, 1, 5, 35, 1, 1, 37, 1, 19, 1, 3, 13, 39, 1, 1, 41, 1, 1, 43
Offset: 1

Views

Author

Omar E. Pol, Dec 21 2024

Keywords

Comments

The excluded divisors are the odd divisors e listed in A005279.
Conjecture 1: the row lengths are given by A237271 (true for at least the first 10000 terms of A237271)
From Hartmut F. W. Hoft, Jan 09 2025: (Start)
Proof of Conjecture 1:
An entire part of SRS(n), n = 2^k * q with k >= 0 and q odd, up to the diagonal is described in row n of A249223 by a 1 in position d, an odd divisor of n, 0's in positions d-1 and 2^(k+1) * f, f >= d an odd divisor of n, and nonzero numbers that increase or decrease by 1 in between.
The odd divisors e of n with d < e < 2^(k+1) * f are the "e" odd divisors of A005279 since for divisor s of n, d < s < e < 2*s < 2^(k+1) * f holds.
The odd divisors u of n greater than A003056(n) are encoded by the 2^(k+1) * f above as u = q/f and odd divisors d < A003056(n) are also encoded as 2^(k+1) * q/d. Then odd divisors e of n with q/f < e < 2^(k+1) * q/d are the "e" odd divisors of A005279 since for divisor t of n, q/f < t < e < 2*t < 2^(k+1) * q/d holds.
For a part containing the diagonal the inequalities above hold on the respective sides of the diagonal.
As a consequence the number of entries in row n of this triangle equals A237271(n). (End)
From Omar E. Pol, Jun 26 2025: (Start)
Conjecture 2: T(n,m) is the smallest number in the m-th 2-dense sublist of divisors of n.
We call "2-dense sublists of divisors of n" to the maximal sublists of divisors of n whose terms increase by a factor of at most 2.
In a 2-dense sublist of divisors of n the terms are in increasing order and two adjacent terms are the same two adjacent terms in the list of divisors of n.
If the conjecture is true so row sums give A379379 and the row lengths give A237271, and the same row lengths have the sequences A384222, A384225 and A384226. Also the conjecture of A384149 should be true.
Observation: at least for the first 5000 rows (the first 15542 terms) the conjecture 2 coincides with the definition from the Name section and the row lengths give A237271.
An example of the conjecture 2, for n = 1..24 is as shown below:
-------------------------------------------------------------------
| n | Row n of | List of divisors of n | Number of |
| | the triangle | [with sublists in brackets] | sublists |
--------------------------------------------------------------------
| 1 | 1; | [1]; | 1 |
| 2 | 1; | [1, 2]; | 1 |
| 3 | 1, 3; | [1], [3]; | 2 |
| 4 | 1; | [1, 2, 4]; | 1 |
| 5 | 1, 5; | [1], [5]; | 2 |
| 6 | 1; | [1, 2, 3, 6]; | 1 |
| 7 | 1, 7; | [1], [7]; | 2 |
| 8 | 1; | [1, 2, 4, 8]; | 1 |
| 9 | 1, 3, 9; | [1], [3], [9]; | 3 |
| 10 | 1, 5; | [1, 2], [5, 10]; | 2 |
| 11 | 1, 11; | [1], [11]; | 2 |
| 12 | 1; | [1, 2, 3, 4, 6, 12]; | 1 |
| 13 | 1, 13; | [1], [13]; | 2 |
| 14 | 1, 7; | [1, 2], [7, 14]; | 2 |
| 15 | 1, 3, 15; | [1], [3, 5], [15]; | 3 |
| 16 | 1; | [1, 2, 4, 8, 16]; | 1 |
| 17 | 1, 17; | [1], [17]; | 2 |
| 18 | 1; | [1, 2, 3, 6, 9, 18]; | 1 |
| 19 | 1, 19; | [1], [19]; | 2 |
| 20 | 1; | [1, 2, 4, 5, 10, 20]; | 1 |
| 21 | 1, 3, 7, 21; | [1], [3], [7], [21]; | 4 |
| 22 | 1, 11; | [1, 2], [11, 22]; | 2 |
| 23 | 1, 23; | [1], [23]; | 2 |
| 24 | 1; | [1, 2, 3, 4, 6, 8, 12, 24]; | 1 |
...
For n = 10 the list of divisors of 10 is [1, 2, 5, 10]. There are two 2-dense sublists of divisors of 10, they are [1, 2], [5, 10]. The smallest numbers in the sublists are [1, 5] respectively, so the row 10 is [1, 5].
For n = 15 the list of divisors of 15 is [1, 3, 5, 15]. There are three 2-dense sublists of divisors of 15, they are [1], [3, 5], [15]. The smallest numbers in the sublists are [1, 3, 15] respectively, so the row 15 is [1, 3, 15].
78 is the first practical number A005153 not in A174973. For n = 78 the list of divisors of 78 is [1, 2, 3, 6, 13, 26, 39, 78]. There are two 2-dense sublists of divisors of 78, they are [1, 2, 3, 6] and [13, 26, 39, 78]. The smallest numbers in the sublists are [1, 13] respectively, so the row 78 is [1, 13].
(End)
Conjecture 3: T(n,m) is the m-th divisor p of n such that p is greater than twice the adjacent previous divisor of n. - Omar E. Pol, Aug 02 2025

Crossrefs

These are the odd terms of A379374.
Subsequence of A182469.
Row sums give A379379.

Programs

  • Mathematica
    row[n_] := Module[{d = Partition[Divisors[n], 2, 1]}, Select[Join[{1}, Select[d, #[[2]] >= 2*#[[1]] &][[;; , 2]]], OddQ]]; Table[row[n], {n, 1, 50}] // Flatten (* Amiram Eldar, Dec 22 2024 *)

Extensions

More terms from Amiram Eldar, Dec 22 2024

A379374 Irregular triangle read by rows in which row n lists the divisors of n except the divisors "e" described in A005279.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 2, 4, 1, 5, 1, 2, 6, 1, 7, 1, 2, 4, 8, 1, 3, 9, 1, 2, 5, 10, 1, 11, 1, 2, 12, 1, 13, 1, 2, 7, 14, 1, 3, 15, 1, 2, 4, 8, 16, 1, 17, 1, 2, 6, 18, 1, 19, 1, 2, 4, 10, 20, 1, 3, 7, 21, 1, 2, 11, 22, 1, 23, 1, 2, 24, 1, 5, 25, 1, 2, 13, 26, 1, 3, 9, 27
Offset: 1

Views

Author

Omar E. Pol, Dec 21 2024

Keywords

Comments

Observation: the sequence of the number of odd terms in row n coincides with at least the first 10000 terms of A237271.
The observation is true for all numbers. For a proof see A379288. - Hartmut F. W. Hoft, Jan 25 2025

Examples

			Triangle begins:
  1;
  1,  2;
  1,  3;
  1,  2,  4;
  1,  5;
  1,  2,  6;
  1,  7;
  1,  2,  4,  8;
  1,  3,  9;
  1,  2,  5, 10;
  1, 11;
  1,  2, 12;
  1, 13;
  1,  2,  7, 14;
  1,  3, 15;
  1,  2,  4,  8, 16;
  1, 17;
  1,  2,  6, 18;
  1, 19;
  1,  2,  4, 10, 20;
  ...
		

Crossrefs

Subsequence of A027750.
Row sums give A379384.
Odd terms give A379288.

Programs

  • Mathematica
    row[n_] := Module[{d = Partition[Divisors[n], 2, 1]}, Join[{1}, Select[d, #[[2]] >= 2*#[[1]] &][[;; , 2]]]]; Table[row[n], {n, 1, 27}] // Flatten (* Amiram Eldar, Dec 22 2024 *)

Extensions

More terms from Alois P. Heinz, Dec 21 2024

A379384 Sum of the divisors of n except the "e" divisors described in A005279.

Original entry on oeis.org

1, 3, 4, 7, 6, 9, 8, 15, 13, 18, 12, 15, 14, 24, 19, 31, 18, 27, 20, 37, 32, 36, 24, 27, 31, 42, 40, 49, 30, 33, 32, 63, 48, 54, 41, 39, 38, 60, 56, 67, 42, 65, 44, 84, 49, 72, 48, 51, 57, 93, 72, 98, 54, 81, 72, 91, 80, 90, 60, 63, 62, 96, 95, 127, 84, 97, 68
Offset: 1

Views

Author

Omar E. Pol, Dec 22 2024

Keywords

Comments

Shares infinitely many terms with A000203.
a(n) = A000203(n) if n is not in A005279.
a(n) < A000203(n) if n is in A005279.

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{d = Partition[Divisors[n], 2, 1]}, 1 + Total[Select[d, #[[2]] >= 2*#[[1]] &][[;; , 2]]]]; Array[a, 100] (* Amiram Eldar, Dec 22 2024 *)

Extensions

More terms from Alois P. Heinz, Dec 22 2024

A379461 Irregular triangle read by rows in which row n lists the divisors m of n such that there is a divisor d of n with d < m < 2*d, or 0 if such divisors do not exist.

Original entry on oeis.org

0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 3, 4, 6, 0, 0, 5, 0, 0, 3, 9, 0, 5, 0, 0, 0, 3, 4, 6, 8, 12, 0, 0, 0, 7, 0, 3, 5, 6, 10, 15, 0, 0, 0, 0, 7, 3, 4, 6, 9, 12, 18, 0, 0, 0, 5, 8, 10, 0, 3, 7, 21, 0, 0, 5, 9, 15, 0, 0, 3, 4, 6, 8, 12, 16, 24, 0, 0, 0, 0, 0, 3, 9, 27, 0
Offset: 1

Views

Author

Omar E. Pol, Dec 23 2024

Keywords

Comments

The number of positive terms in row n is A174903(n).
The indices of the rows that contain a zero give A174905.
The indices of the rows that contain positive integers give A005279.
The positive integers in the n-th row are the missing divisors of n in the n-th row of A379374.
The odd integers in the n-th row are the missing odd divisors of n in the n-th row of A379288.

Examples

			Triangle begins:
  0;
  0;
  0;
  0;
  0;
  3;
  0;
  0;
  0;
  0;
  0;
  3, 4, 6;
  0;
  0;
  5;
  0;
  0;
  3, 9;
  0;
  5;
  ...
From _Omar E. Pol_, Apr 19 2025: (Start)
For n = 12 there are three divisors m of 12 such that there is a divisor d of 12 with d < m < 2*d. Those divisors are 3, 4 and 6 as shown below:
   d  <  m  <  2*d
--------------------
   1            2
   2     3      4
   3     4      6
   4     6      8
   6           12
  12           24
.
So the 12th row of the triangle is [3, 4, 6]. (End)
		

Crossrefs

Programs

  • Mathematica
    row[n_] := Module[{d = Partition[Divisors[n], 2, 1], e}, e = Select[d, #[[2]] < 2*#[[1]] &][[;; , 2]]; If[e == {}, {0}, e]]; Table[row[n], {n, 1, 55}] // Flatten (* Amiram Eldar, Dec 23 2024 *)

Extensions

More terms from Amiram Eldar, Dec 23 2024
Name changed by Omar E. Pol, Feb 05 2025

A383147 Sum of odd divisors m of n such that there is a divisor d of n with d < m < 2*d.

Original entry on oeis.org

0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 3, 0, 0, 5, 0, 0, 12, 0, 5, 0, 0, 0, 3, 0, 0, 0, 7, 0, 23, 0, 0, 0, 0, 7, 12, 0, 0, 0, 5, 0, 31, 0, 0, 29, 0, 0, 3, 0, 0, 0, 0, 0, 39, 0, 7, 0, 0, 0, 23, 0, 0, 9, 0, 0, 47, 0, 0, 0, 7, 0, 12, 0, 0, 30, 0, 11, 42, 0, 5, 0, 0, 0, 31, 0, 0, 0, 11, 0, 77, 13, 0, 0, 0, 0
Offset: 1

Views

Author

Omar E. Pol, Apr 17 2025

Keywords

Examples

			For n = 18 there are two odd divisors m of 18 such that there is a divisor d of 18 with d < m < 2*d. Those odd divisors are 3 and 9 as shown below:
   d  <  m  <  2*d
--------------------
   1            2
   2     3      4
   3            6
   6     9     12
   9           18
  18           36
.
The sum of both divisors is 3 + 9 = 12, so a(18) = 12.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{d = Partition[Divisors[n], 2, 1]}, Total[Select[d, OddQ[#[[2]]] && #[[2]] < 2*#[[1]] &][[;; , 2]]]]; Array[a, 100] (* Amiram Eldar, Apr 18 2025 *)

Formula

a(n) = A000593(n) - A379379(n).
Showing 1-6 of 6 results.