A383726 Square array read by ascending antidiagonals, where row n lists numbers m such that omega(m) = n and the largest prime factor of m equals the sum of its remaining distinct prime factors, where omega(m) = A001221(m).
30, 3135, 60, 3570, 6279, 70, 844305, 7140, 8855, 90, 1231230, 1218945, 8970, 9405, 120
Offset: 3
Examples
Array begins: n\k| 1 2 3 4 5 ... ----------------------------------------------------- 3 | 30, 60, 70, 90, 120, ... = A365795 4 | 3135, 6279, 8855, 9405, 10695, ... = A383728 5 | 3570, 7140, 8970, 10626, 10710, ... = A383729 6 | 844305, 1218945, 2496585, 2532915, 3024021, ... 7 | 1231230, 2062830, 2181270, 2462460, 3327870, ... ... | \______ A383727 (main diagonal) A383725
Programs
-
Mathematica
Module[{dmax = 5, a, m}, a = Table[m = Times @@ Prime[Range[n]] - 1; Table[While[Length[#] != n || Total[Most[#]] != Last[#] & [FactorInteger[++m][[All,1]]]]; m, dmax-n+3], {n, dmax+2, 3, -1}]; Array[Diagonal[a, # - dmax] &, dmax]]
Comments