cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385350 Numbers j such that the product of odd proper divisors of j is j.

Original entry on oeis.org

1, 15, 21, 27, 33, 35, 39, 51, 55, 57, 65, 69, 77, 85, 87, 91, 93, 95, 111, 115, 119, 123, 125, 129, 133, 141, 143, 145, 155, 159, 161, 177, 183, 185, 187, 201, 203, 205, 209, 213, 215, 217, 219, 221, 235, 237, 247, 249, 253, 259, 265, 267, 287, 291, 295, 299
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 26 2025

Keywords

Comments

Fixed points of A385349.
Odd terms in A007422.
Also 1 with odd numbers with exactly 4 divisors. - David A. Corneth, Jun 26 2025

Crossrefs

Programs

  • Maple
    q:= n-> n=1 or n::odd and numtheory[tau](n)=4:
    select(q, [$1..500])[];  # Alois P. Heinz, Jun 26 2025
  • Mathematica
    A385349[n_] := Times @@ Select[Divisors[n], # < n && OddQ[#] &]; Select[Range[300], A385349[#] == # &]
  • PARI
    isok(k) = vecprod(select((x->((x%2)==1) && (xMichel Marcus, Jun 26 2025
    
  • PARI
    is(n) = (n == 1) || (bitand(n, 1) && numdiv(n) == 4) \\ David A. Corneth, Jun 26 2025
    
  • Python
    from math import isqrt
    from sympy import primepi, integer_nthroot, primerange
    def A385350(n):
        def f(x): return int(n-1+x-primepi(integer_nthroot(x,3)[0])+(t:=primepi(s:=isqrt(x)))+(t*(t-1)>>1)-sum(primepi(x//k) for k in primerange(3, s+1)))
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m # Chai Wah Wu, Jun 27 2025