cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 693 results. Next

A330841 Numbers of the form 2^(2*p-3)*9*M_p^2, where p > 2 is a Mersenne exponent, A000043, and M_p is the corresponding Mersenne prime, A000668.

Original entry on oeis.org

3528, 1107072, 297289728, 5065312705708032, 332036326796518490112, 85002272432789680816128, 23926103901845565010319828907592777728, 31803247166010917904914435277786533840425989636087697369118739195223867392
Offset: 1

Views

Author

Walter Kehowski, Jan 25 2020

Keywords

Comments

a(1) = 3528 has power-spectral basis {21^2, 28^2, 48^2}, of index 1. If n > 1, then a(n) has power-spectral basis {M^2*(M+2)^2, (1/4)*M^2*(M+1)^2, (M^2-1)^2}, with index 2, where M=A000668(n+1) is the (n+1)-st Mersenne prime. The first element of the spectral basis of a(n), n > 1, is A330819(n+1), the second element is A133051(n+1), and the third element is A330820(n+1). Generally, a power-spectral basis is a spectral basis that consists of primes and powers.
The spectral sum of a(n), that is, the sum of the elements of its spectral basis, is a(1) + 1 whenever n = 1, and 2*a(n)+1 whenever n > 1. In this case, we say that a(n) has index 1 and index 2, respectively.
a(n), n > 1, is also isospectral with 9*A133051(n), that is, a(n) and 9*A133051(n) have the same spectral basis, but 9*A133051(n) has index 1. Thus 9*A133051(n) and a(n) form an isospectral pair.

Examples

			a(2) = 2^(2*5-3)*9*31^2 = 2^7*9*31^2 = 1107072 has spectral basis {1023^2, 496^2, 960^2}, consisting of powers. The spectral sum of a(2), that is, the sum of the elements of its spectral basis, is 2*a(2)+1 = 2214145. In this case we say that a(2) has index 2. The number 9 * A330817(2) = 2^(2*5-2)*9*31^2 = 2^8*9*31^2 = 2214144 has the same spectral basis as a(2), but with index 1. We say that 9 * A330817(2) and a(2) are isospectral and form an isospectral pair.
		

Crossrefs

Programs

  • Maple
    a := proc(n::posint)
    local p, m;
    p:=NumberTheory[IthMersenne](n+1);
    m:=2^p-1;
    return 2^(2*p-3)*9*m^2;
    end;
  • Mathematica
    f[p_] := 9*2^(2*p - 3)*(2^p - 1)^2; f /@ MersennePrimeExponent /@ Range[2, 9] (* Amiram Eldar, Feb 07 2020 *)

Formula

a(n) = A152922(n+1) * 9 * A133049(n+1).

A366818 Let p = A000043(n) be the n-th Mersenne exponent, then a(n) = ((2^p-1)^2-1)/p.

Original entry on oeis.org

4, 16, 192, 2304, 5160960, 1010565120, 14467203072, 148764064972013568, 87162491526879729295140036437606400, 4304762755241260838085244444377946703587691074682880, 246056756234946697892331840382404519263272106760845744463151104, 227937183538024006739312962615527377661237903932985846822055286571232395264
Offset: 1

Views

Author

Jianing Song, Oct 24 2023

Keywords

Comments

a(n) is the largest k such that 2 is a k-th power in the finite field F_{2^p-1}(i), where i^2 = -1.

Examples

			In F_9 = F_3(i), we have 2 = (1+i)^2.
Jn F_49 = F_7(i), we have 2 = (3+i)^16.
In F_961 = F_31(i), we have 2 = (5+4*i)^192.
		

Crossrefs

Programs

  • PARI
    A366818(lim) = my(q); forprime(p=2, lim, if(isprime(q=2^p-1), print1((q^2-1)/p, ", ")))

A065406 Mersenne prime exponents (A000043) which are also Sophie Germain primes (A005384).

Original entry on oeis.org

2, 3, 5, 89, 9689, 21701, 859433, 43112609
Offset: 1

Views

Author

Labos Elemer, Nov 06 2001

Keywords

Comments

From Gord Palameta, Jul 19 2018: (Start)
All terms after the first two are congruent to 1 modulo 4, because if p is a Sophie Germain prime that is congruent to 3 modulo 4 then 2p + 1 divides 2^p - 1.
Boklan and Conway conjecture that this sequence is finite.
(End)

Examples

			31 = 2^5 - 1 and 11 = 2 * 5 + 1 are primes.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[1000]], PrimeQ[2# + 1] && PrimeQ[2^# - 1] &] (* Alonso del Arte, Jul 20 2018 *)
    Select[Prime@ Range[10^6], And[PrimeQ[2 # + 1], MersennePrimeExponentQ@ #] &] (* Michael De Vlieger, Jul 20 2018 *)

Extensions

a(8) = 43112609, since the ordinal position of this term in A000043 is now confirmed. - Gord Palameta, Jul 19 2018

A126045 Exponents p of the Mersenne primes 2^p - 1 (see A000043) read mod 5.

Original entry on oeis.org

2, 3, 0, 2, 3, 2, 4, 1, 1, 4, 2, 2, 1, 2, 4, 3, 1, 2, 3, 3, 4, 1, 3, 2, 1, 4, 2, 3, 3, 4, 1, 4, 3, 2, 4, 1, 2, 3, 2, 1, 3, 1, 2, 2, 2, 1, 4, 1
Offset: 1

Views

Author

Artur Jasinski, Dec 17 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Array[Mod[MersennePrimeExponent@ #, 5] &, 45] (* Michael De Vlieger, Apr 07 2018 *)

Formula

a(n) = A010874(A000043(n)). - Michel Marcus, Apr 07 2018

Extensions

a(45)-a(47) from Ivan Panchenko, Apr 08 2018
a(48) from Amiram Eldar, Oct 14 2024

A126046 Exponents p of the Mersenne primes 2^p - 1 (see A000043) read mod 6.

Original entry on oeis.org

2, 3, 5, 1, 1, 5, 1, 1, 1, 5, 5, 1, 5, 1, 1, 1, 1, 1, 5, 1, 5, 5, 5, 5, 5, 1, 1, 5, 1, 1, 1, 5, 5, 1, 5, 5, 5, 5, 1, 1, 1, 5, 1, 5, 5, 1, 5, 5
Offset: 1

Views

Author

Artur Jasinski, Dec 17 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Array[Mod[MersennePrimeExponent@ #, 6] &, 45] (* Michael De Vlieger, Apr 07 2018 *)

Formula

a(n) = A010875(A000043(n)). - Michel Marcus, Apr 07 2018

Extensions

a(45)-a(46) from Ivan Panchenko, Apr 07 2018
a(47) from Ivan Panchenko, Apr 09 2018
a(48) from Max Alekseyev, Sep 19 2023

A126047 Exponents p of the Mersenne primes 2^p - 1 (see A000043) read mod 7.

Original entry on oeis.org

2, 3, 5, 0, 6, 3, 5, 3, 5, 5, 2, 1, 3, 5, 5, 5, 6, 4, 4, 6, 1, 1, 6, 1, 1, 4, 5, 3, 1, 1, 1, 6, 1, 6, 5, 3, 2, 5, 2, 1, 4, 5, 1, 2, 2, 4, 1, 5
Offset: 1

Views

Author

Artur Jasinski, Dec 17 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Mod[MersennePrimeExponent[Range[48]], 7] (* Amiram Eldar, Oct 14 2024 *)

Formula

a(n) = A010876(A000043(n)). - Ivan Panchenko, Apr 07 2018

Extensions

a(45)-a(46) from Ivan Panchenko, Apr 07 2018
a(47) from Ivan Panchenko, Apr 09 2018
a(48) from Amiram Eldar, Oct 14 2024

A126048 Exponents p of the Mersenne primes 2^p - 1 (see A000043) read mod 8.

Original entry on oeis.org

2, 3, 5, 7, 5, 1, 3, 7, 5, 1, 3, 7, 1, 7, 7, 3, 1, 1, 5, 7, 1, 5, 5, 1, 5, 1, 1, 3, 7, 1, 3, 7, 1, 3, 5, 5, 1, 1, 5, 3, 7, 7, 1, 1, 3, 1, 1, 1
Offset: 1

Views

Author

Artur Jasinski, Dec 17 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Mod[MersennePrimeExponent[Range[47]],8] (* Harvey P. Dale, Apr 18 2019 *)

Formula

a(n) = A010877(A000043(n)). - Ivan Panchenko, Apr 07 2018

Extensions

a(45)-a(46) from Ivan Panchenko, Apr 07 2018
a(47) from Ivan Panchenko, Apr 09 2018
a(48) from Amiram Eldar, Oct 14 2024

A126049 Exponents p of the Mersenne primes 2^p - 1 (see A000043) read mod 9.

Original entry on oeis.org

2, 3, 5, 7, 4, 8, 1, 4, 7, 8, 8, 1, 8, 4, 1, 7, 4, 4, 5, 4, 5, 5, 8, 2, 2, 7, 1, 5, 1, 1, 1, 2, 5, 1, 2, 2, 5, 5, 1, 1, 4, 5, 7, 2, 5, 1, 8, 5
Offset: 1

Views

Author

Artur Jasinski, Dec 17 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Array[Mod[MersennePrimeExponent@ #, 9] &, 45] (* Michael De Vlieger, Apr 10 2018 *)

Formula

a(n) = A010878(A000043(n)). - Ivan Panchenko, Apr 07 2018

Extensions

a(45)-a(46) from Ivan Panchenko, Apr 07 2018
a(47) from Ivan Panchenko, Apr 09 2018
a(48) from Amiram Eldar, Oct 14 2024

A126050 Exponents p of the Mersenne primes 2^p - 1 (see A000043) read mod 10.

Original entry on oeis.org

2, 3, 5, 7, 3, 7, 9, 1, 1, 9, 7, 7, 1, 7, 9, 3, 1, 7, 3, 3, 9, 1, 3, 7, 1, 9, 7, 3, 3, 9, 1, 9, 3, 7, 9, 1, 7, 3, 7, 1, 3, 1, 7, 7, 7, 1, 9, 1
Offset: 1

Views

Author

Artur Jasinski, Dec 17 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Array[Mod[MersennePrimeExponent@ #, 10] &, 45] (* Michael De Vlieger, Apr 10 2018 *)

Formula

a(n) = A010879(A000043(n)). - Ivan Panchenko, Apr 07 2018

Extensions

a(45)-a(46) from Ivan Panchenko, Apr 07 2018
a(47) from Ivan Panchenko, Apr 09 2018
a(48) from Amiram Eldar, Oct 14 2024

A126051 Exponents p of the Mersenne primes 2^p - 1 (see A000043) read mod 11.

Original entry on oeis.org

2, 3, 5, 7, 2, 6, 8, 9, 6, 1, 8, 6, 4, 2, 3, 3, 4, 5, 7, 1, 9, 8, 4, 5, 9, 10, 2, 3, 8, 5, 7, 6, 3, 3, 4, 6, 7, 1, 2, 3, 10, 1, 8, 8, 9, 2, 1, 4
Offset: 1

Views

Author

Artur Jasinski, Dec 17 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Array[Mod[MersennePrimeExponent@ #, 11] &, 45] (* Michael De Vlieger, Apr 10 2018 *)

Formula

a(n) = A010880(A000043(n)). - Ivan Panchenko, Apr 07 2018

Extensions

a(45)-a(46) from Ivan Panchenko, Apr 07 2018
a(47) from Ivan Panchenko, Apr 09 2018
a(48) from Amiram Eldar, Oct 14 2024
Previous Showing 61-70 of 693 results. Next