cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A115226 Order of the group of invertible 3 X 3 symmetric matrices over Z(n).

Original entry on oeis.org

1, 28, 468, 1792, 12400, 13104, 100548, 114688, 341172, 347200, 1609300, 838656, 4453488, 2815344, 5803200, 7340032, 22713088, 9552816, 44563284, 22220800, 47056464, 45060400, 141587908, 53673984, 193750000, 124697664, 248714388, 180182016, 574288624, 162489600
Offset: 1

Views

Author

T. D. Noe, Jan 16 2006

Keywords

Comments

Note that A115225 gives the number of 3 x 3 symmetric matrices having nonzero determinant. However, for composite n, a nonzero determinant is not sufficient for the matrix to be invertible; the determinant must also be relatively prime to n.

Crossrefs

Cf. A000056 (order of the group SL(2, Z_n)), A064767 (order of the group GL(3, Z_n)), A115225.

Programs

  • Mathematica
    Table[cnt=0; Do[m={{a, b, c}, {b, d, e}, {c, e, f}}; If[Det[m, Modulus->n]>0 && MatrixQ[Inverse[m, Modulus->n]], cnt++ ], {a, 0, n-1}, {b, 0, n-1}, {c, 0, n-1}, {d, 0, n-1}, {e, 0, n-1}, {f, 0, n-1}]; cnt, {n, 2, 20}]
    f[p_, e_] := p^(6*e - 4)*(p^3 - 1)*(p - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 10 2020 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^(6*f[i,2] - 4)*(f[i,1]^3 - 1)*(f[i,1] - 1));} \\ Amiram Eldar, Nov 05 2022

Formula

For prime p, a(p) = (p^3-1)*(p-1)*p^2.
In general, a(n) = A115224(n) * phi(n) = A064767(n)/A000056(n).
Multiplicative with a(p^e) = p^(6*e - 4)*(p^3 - 1)*(p - 1). - Amiram Eldar, Sep 10 2020
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + p^4/((p-1)^3 * (p^2+p+1)^2 * (p^3+1))) = 1.03859354030263389220782701124174403591851545785245128014455467710993780757... - Vaclav Kotesovec, Sep 20 2020
Sum_{k=1..n} a(k) ~ c * n^7, where c = (1/7) * Product_{p prime} (1 - 1/p^2 - 1/p^4 + 1/p^5) = 0.08230753362... . - Amiram Eldar, Nov 05 2022

Extensions

More terms from Amiram Eldar, Sep 10 2020

A300915 Order of the group PSL(2,Z_n).

Original entry on oeis.org

1, 6, 12, 24, 60, 72, 168, 96, 324, 360, 660, 288, 1092, 1008, 720, 768, 2448, 1944, 3420, 1440, 2016, 3960, 6072, 1152, 7500, 6552, 8748, 4032, 12180, 4320, 14880, 6144, 7920, 14688, 10080, 7776, 25308, 20520, 13104, 5760
Offset: 1

Views

Author

Geoffrey Critzer, Mar 16 2018

Keywords

Comments

The projective special linear group PSL(2,Z_n) is the quotient group of SL(2,Z_n) with its center. The center of SL(2,Z_n) is the group of scalar matrices whose diagonal entry is x in Z_n such that x^2 = 1. The elements of PSL(2,Z_n) are equivalence classes of 2 X 2 matrices with entries in Z_n where two matrices are equivalent if one is a scalar multiple of the other.

Crossrefs

Programs

  • Mathematica
    n := 2; nn = 40; \[Gamma][n_, q_] := Product[q^n - q^i, {i, 0, n - 1}]; Prepend[ Table[Product[ FactorInteger[m][[All, 1]][[j]]^(n^2 (FactorInteger[m][[All, 2]][[j]] - 1)) \[Gamma][n,FactorInteger[m][[All, 1]][[j]]], {j, 1, PrimeNu[m]}], {m, 2, nn}]/Table[EulerPhi[m], {m, 2, nn}]/ Table[Count[Mod[Select[Range[m], GCD[#, m] == 1 &]^n, m], 1], {m, 2, nn}], 1]
    f[p_, e_] := (p^2-1)*p^(3*e-2)/2; f[2, e_] := Switch[e, 1, 6, 2, 24, , 3*2^(3*e-4)]; a[1] = 1; a[n] := Times @@ f @@@ FactorInteger[n]; Array[a, 40] (* Amiram Eldar, Dec 01 2022 *)
  • PARI
    a(n) = {my(f=factor(n)); prod(i=1, #f~, my([p,e]=f[i,]); (p^2-1)*p^(3*e-2)/if(p==2, 2^min(2, e-1), 2))} \\ Andrew Howroyd, Aug 01 2018

Formula

a(n) = A000056(n)/A060594(n).
Multiplicative with a(2) = 6, a(2^2) = 24, a(2^e) = 3*2^(3*e-4) for e > 2, and a(p^e) = (p^2-1)*p^(3*e-2)/2 for p > 2. - Amiram Eldar, Dec 01 2022

Extensions

Keyword:mult added by Andrew Howroyd, Aug 01 2018

A316498 Number of normal subgroups of the special linear group SL(2, Z_n).

Original entry on oeis.org

1, 3, 4, 7, 3, 13, 3, 15, 6, 10, 3, 32, 3, 10, 13, 26, 3, 20, 3, 25, 13, 10, 3, 75, 5, 10, 8, 25, 3, 48, 3, 37, 13, 10, 10, 50, 3, 10, 13, 60, 3, 48, 3, 25, 20, 10, 3, 135, 5, 17, 13, 25, 3, 27, 10, 60, 13, 10, 3, 127, 3, 10, 20, 48, 10, 48, 3, 25, 13, 38
Offset: 1

Views

Author

Andrew Howroyd, Jul 04 2018

Keywords

Crossrefs

Programs

  • GAP
    Concatenation([1], List([2..20], n->Size(NormalSubgroups(SL(2, Integers mod n)))));

A327569 Exponent of the group SL(2, Z_n).

Original entry on oeis.org

1, 6, 12, 12, 60, 12, 168, 24, 36, 60, 660, 12, 1092, 168, 60, 48, 2448, 36, 3420, 60, 168, 660, 6072, 24, 300, 1092, 108, 168, 12180, 60, 14880, 96, 660, 2448, 840, 36, 25308, 3420, 1092, 120, 34440, 168, 39732, 660, 180, 6072, 51888, 48, 1176, 300, 2448, 1092, 74412, 108, 660, 168
Offset: 1

Views

Author

Jianing Song, Sep 17 2019

Keywords

Comments

The exponent of a finite group G is the least positive integer k such that x^k = e for all x in G, where e is the identity of the group. That is to say, the exponent of a finite group G is the LCM of the orders of elements in G. Of course, the exponent divides the order of the group.

Examples

			SL(2, Z_2) is isomorphic to S_3, which has 1 identity element, 3 elements with order 2 and 2 elements with order 3, so a(2) = lcm(1, 2, 3) = 6.
		

Crossrefs

Programs

  • PARI
    MatOrder(M)={my(id=matid(#M), k=1, N=M); while(N<>id, k++; N=N*M); k}
    a(n)={my(m=1); for(a=0, n-1, for(b=0, n-1, for(c=0, n-1, for(d=0, n-1, my(M=Mod([a, b; c, d], n)); if(matdet(M)==1, m=lcm(m, MatOrder(M))))))); m} \\ Following Andrew Howroyd's program for A316563

Formula

If gcd(m, n) = 1 then a(m*n) = lcm(a(m), a(n)).
Conjecture: a(p^e) = (p^2-1)*p^e/2 for primes p > 2 and 3*2^e for p = 2. If this is true, then 12 divides a(n) for n > 2.

A194894 The number of the ordered triples (A,B,C) satisfying the system of the modular relations {A*B - B*A = C, B*C - C*B = A, C*A - A*C = B}, where A,B,C are distinct 2 X 2 matrices over Z(n).

Original entry on oeis.org

0, 0, 24, 0, 120, 24, 336, 0, 648, 120, 1320, 24, 2184, 336, 3024, 0, 4896, 648, 6840, 120, 8424, 1320, 12144, 24, 15000, 2184, 17496, 336, 24360, 3024, 29760, 0, 33024, 4896, 40776, 648, 50616, 6840, 54624, 120, 68880
Offset: 1

Views

Author

Erdos Pal, Sep 04 2011

Keywords

Comments

If (A,B,C) is a triple and X is chosen from among A,B,C, then trace(X)=0 mod n, X*X = -det(X)*IdentityMatrix mod n, A*B + B*A = B*C + C*B = C*A + A*C = 0 mod n, det(A) = det(B) = det(C) mod n, A*A = B*B = C*C mod n, A = 2*B*C, B = 2*C*A, C = 2*A*B mod n.
For a given value of n, consider the family of triples (A,B,C) for which d = det(A) = det(B) = det(C) mod n. Let b(n,d) denote the number of elements of the set {A: (A,B,C) is a triple and det(A) = d}. Let b(n) = Sum{ b(n,d) for all such d }, for example, d(15) = 6 + 30 + 180. Detailed results of searching for trios (N(d) = number of triples in the family):
. .n b(n,d) ...d ......N
. .1 .....0 .... ......0
. .2 .....0 .... ......0
. .3 .....6 ...1 .....24
. .4 .....0 .... ......0
. .5 ....30 ...4 ....120
. .6 .....6 ...4 .....24
. .7 ....42 ...2 ....336
. .8 .....0 .... ......0
. .9 ....54 ...7 ....648
. 10 ....30 ...4 ....120
. 11 ...110 ...3 ...1320
. 12 .....6 ...4 .....24
. 13 ...182 ..10 ...2184
. 14 ....42 ...2 ....336
. 15......6 ..10 .....24
. 15.....30 ...9 ....120
. 15....180 ...4 ...2880
. 16 .....0 .... ......0
. 17 ...306 ..13 ...4896
. 18 ....54 ..16 ....648
. 19 ...342 ...5 ...6840
. 20 ....30 ...4 ....120
. 21......6 ...7 .....24
. 21....252 ..16 ...8064
. 21.....42 ...9 ....336
. 22 ...110 ..14 ...1320
. 23 ...506 ...6 ..12144
. 24 .....6 ..16 .....24
. 25 ...750 ..19 ..15000
. 26 ...182 .... ...2184
. 27 ...486 ...7 ..17496
. 28 ....42 ..16 ....336
. 29 ...870 ..22 ..24360
. 30......6 ..10 .....24
. 30.....30 ..24 ....120
. 30....180 ...4 ...2880
. 31 ...930 ...8 ..29760
. 32 .....0 .... ......0
. 33......6 ..22 .....24
. 33....660 ..25 ..31680
. 33....110 ...3 ...1320
. 34 ...306 ..30 ...4896
. 35...1260 ...9 ..40320
. 35.....42 ..30 ....336
. 35.....30 ..14 ....120
. 36 ....54 ..16 ....648
. 37 ..1406 ..28 ..50616
. 38 ...342 ..24 ...6840
. 39......6 ..13 .....24
. 39....182 ..36 ...2184
. 39...1092 ..10 ..52416
. 40 ....30 ..24 ....120
. 41 ..1722 ..31 ..68880
Remarks for the cases n<=41 (conjectures for n>41):
b(n) is similar to a(n), i.e., b(2^e)=0 for e>=0, b(m*2^e)=b(m) for m>=0 and e>=0, b(m*n) = b(m) + b(n) + b(m)*b(n) for gcd(m,n)=1;
b(p) = (p-1)*p for primes of the form p = 4*k + 1;
b(p) = p*(p+1) for primes of the form p = 4*k - 1;
b(p^e) = b(p)*(p^(2*(e-1))) for odd primes p and e>=1;
if n=p^e (p is odd prime, e>=1) then d is a constant for all trios (there is only one family), moreover 4*d=1 (mod n).

Examples

			The matrices A=[0,1;2,0], B=[1,1;1,2], C=[2,1;1,1] of row order form satisfy the system of the (mod 3)-relations {A*B - B*A = C, A#B, B*C - C*B = A, B#C, C*A - A*C = B, C#A}, so we have a trio (+A,+B,+C). All the solutions of the system can be represented by the trios
(+A,+B,+C), (+B,+C,+A), (+C,+A,+B),
(+A,-C,+B), (-C,+B,+A), (+B,+A,-C),
(+A,+C,-B), (+C,-B,+A), (-B,+A,+C),
(+A,-B,-C), (-B,-C,+A), (-C,+A,-B),
(-A,+B,-C), (+B,-C,-A), (-C,-A,+B),
(-A,-C,-B), (-C,-B,-A), (-B,-A,-C),
(-A,+C,+B), (+C,+B,-A), (+B,-A,+C),
(-A,-B,+C), (-B,+C,-A), (+C,-A,-B), so a(3)=24.
		

Crossrefs

Formula

a(2^e) = 0 for e>=0; a( m*(2^e) ) = a(m) for m>=1,e>=0.
a(p^e) = (p^2-1)*p^(3*e-2) for odd prime p,e>=1.
a(m*n) = a(m) + a(n) + a(m)*a(n) for gcd(m,n)=1
Previous Showing 21-25 of 25 results.