cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 44 results. Next

A000137 Series-parallel numbers.

Original entry on oeis.org

1, 2, 6, 18, 58, 186, 614, 2034, 6818, 22970, 77858, 264970, 905294, 3102434, 10661370, 36722642, 126752218, 438294018, 1518032598, 5265341314, 18286911130, 63586988434, 221342104842, 771235606050, 2689688538646, 9388096331642
Offset: 1

Views

Author

Keywords

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 142.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    n = 30; s = 1/(1 - x) + O[x]^(n + 1); Do[s = s/(1 - x^k)^Coefficient[s, x^k] + O[x]^(n + 1), {k, 2, n}] ; S = s - 1; CoefficientList[(1 + S)/(1 - S) + O[x]^n, x] (* Jean-François Alcover, Feb 09 2016 *)

Formula

G.f.: x(1+S)/(1-S), where S = g.f. for A000084.

A001572 Related to series-parallel networks.

Original entry on oeis.org

1, 1, 1, 1, 3, 5, 17, 41, 127, 365, 1119, 3413, 10685, 33561, 106827, 342129, 1104347, 3584649, 11701369, 38374065, 126395259, 417908329, 1386618307, 4615388353, 15407188529, 51569669429, 173033992311, 581905285089, 1961034571967
Offset: 0

Views

Author

Keywords

Comments

From Gary W. Adamson, Sep 27 2008: (Start)
Starting (1, 1, 1, 3, 5, 17, ...) = the INVERTi transform of A000084: (1, 2, 4, 10, 24, 66, ...).
Equals left border of triangle A144962. (End)

References

  • J. Riordan and C. E. Shannon, The number of two-terminal series-parallel networks, J. Math. Phys., 21 (1942), 83-93. Reprinted in Claude Elwood Shannon: Collected Papers, edited by N. J. A. Sloane and A. D. Wyner, IEEE Press, NY, 1993, pp. 560-570.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000084, A144962. - Gary W. Adamson, Sep 27 2008

Programs

  • Mathematica
    max = 29;(* b = A000669 *) b[1] = 1; b[n_] := Module[{s}, s = Series[1/(1 - x), {x, 0, n}]; Do[s = Series[s/(1 - x^k)^Coefficient[s, x^k], {x, 0, n}], {k, 2, n}]; Coefficient[s, x^n]/2]; gf = 2 - Product[(1 - x^n)^b[n], {n, 1, max}] + O[x]^max; CoefficientList[gf, x] (* Jean-François Alcover, Oct 23 2016 *)

Formula

G.f.: 1 - Sum_{k>=1} a(k)*x^k = Product_{n>=1} (1-x^n)^A000669(n).

A001677 Number of series-parallel networks with n edges.

Original entry on oeis.org

1, 2, 3, 6, 12, 26, 59, 146, 368, 976, 2667, 7482, 21440, 62622, 185637, 557680, 1694256, 5198142, 16086486, 50165218, 157510504, 497607008, 1580800091, 5047337994, 16190223624, 52153429218, 168657986843, 547389492416
Offset: 2

Views

Author

Keywords

Examples

			a(5) = 24 - (1/2)*(1*10+2*4+4*2+10*1) = 6.
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • B. D. H. Tellegen, Geometrical configurations and duality of electrical networks, Philips Technical Review, 5 (1940), 324-330.

Crossrefs

Programs

  • Mathematica
    m = 29; ClearAll[a, b, s]; a[1] = 1; a[2] = 2; a[3] = 4; b[1] = 1; b[n_ /; n >= 2] = a[n]/2; ex = Product[ 1/(1-x^k)^b[k], {k, 1, m}] - 1 - Sum[ a[k]*x^k, {k, 1, m}]; coes = CoefficientList[ Series[ ex, {x, 0, m}], x]; sol = Solve[ Thread[ coes == 0]][[1]]; Do[ s[k] = a[k] /. sol, {k, 1, m}]; a[2] = 1; a[3] = 2; a[n_] := s[n] - (1/2)*Sum[ s[i]*s[n-i], {i, 1, n-1}] - If[ OddQ[n], 0, s[n/2]/2]; Table[ a[n], {n, 2, m}] (* Jean-François Alcover, Feb 24 2012 *)

Formula

a(n) = s(n) - (1/2)*Sum_{i=1..n-1} s(i)*s(n-i) - (1/2)*s(n/2), where s() = A000084 and the last term is omitted if n is odd.

Extensions

More terms from David W. Wilson, Sep 20 2000

A036655 Numbers d_n used in recurrence for series-parallel numbers.

Original entry on oeis.org

1, 2, 2, 6, 2, 18, 2, 46, 14, 126, 2, 454, 2, 1266, 134, 4222, 2, 14202, 2, 46406, 1274, 155502, 2, 531790, 122, 1792810, 13802, 6126334, 2, 21032794, 2, 72121854, 155510, 248396798, 1382, 857944150, 2, 2964896882, 1792818, 10269600622
Offset: 0

Views

Author

Keywords

References

  • J. Riordan, An Introduction to Combinatorial Analysis, foot of p. 141.

Formula

G.f.: S'*(1-S)/(1+S), where S = g.f. for A000084.

A058386 Essentially series series-parallel networks with n unlabeled edges, multiple edges not allowed.

Original entry on oeis.org

0, 0, 1, 1, 2, 4, 9, 20, 47, 112, 274, 678, 1709, 4346, 11176, 28966, 75656, 198814, 525496, 1395758, 3723986, 9975314, 26817655, 72332320, 195679137, 530814386, 1443556739, 3934880554, 10748839215, 29420919456, 80678144437, 221618678694
Offset: 0

Views

Author

N. J. A. Sloane, Dec 20 2000

Keywords

Crossrefs

Programs

  • Mathematica
    (* f = g.f. of A058385 *) max = 31; f[x_] := Sum[b[n]*x^n, {n, 0, max}]; b[0] = 0; b[1] = 1; b[2] = 0; b[3] = 1; coef = CoefficientList[ Series[1 - x + x^2 + 2*f[x] - Product[(1 - x^j)^(-b[j]), {j, 1, max}], {x, 0, max}], x][[ 5 ;; All]]; g[x_] := Sum[a[n]*x^n, {n, 0, max}]; a[0] = a[1] = 0; a[2] = a[3] = 1; coeg = CoefficientList[ Series[g[x] - f[x] + x - x^2, {x, 0, max}], x][[ 5 ;; All]]; solf = SolveAlways[ Thread[coef == 0], x] ; solg = SolveAlways[ Thread[coeg == 0] /. solf[[1]], x]; Table[a[n], {n, 0, max}] /. solg[[1]] (* Jean-François Alcover, Jul 18 2012 *)
    terms = 32; (* f = g.f. of A058385 *) f[] = 0; Do[f[x] = (1/2)*(-1 + x - x^2 + Product[(1 - x^j)^(-Ceiling[Coefficient[f[x], x, j]]), {j, 1,  terms}]) + O[x]^ terms // Normal, 4*terms]; A[x_] = f[x] - x + x^2 + O[x]^terms; CoefficientList[A[x], x] (* Jean-François Alcover, Jan 10 2018 *)

Formula

G.f. satisfies A(x) = A058385(x) - x + x^2.

A058964 Decimal expansion of series-parallel constant.

Original entry on oeis.org

2, 8, 0, 8, 3, 2, 6, 6, 6, 9, 8, 4, 2, 0, 0, 3, 5, 5, 3, 9, 3, 2
Offset: 0

Views

Author

N. J. A. Sloane, E. M. Rains, Jan 14 2001

Keywords

Examples

			0.2808326669842003553932...
		

References

  • J. W. Moon, Some enumerative results on series-parallel networks, Annals Discrete Math., 33 (1987), 199-226.
  • J. Riordan and C. E. Shannon, The number of two-terminal series-parallel networks, J. Math. Phys., 21 (1942), 83-93. Reprinted in Claude Elwood Shannon: Collected Papers, edited by N. J. A. Sloane and A. D. Wyner, IEEE Press, NY, 1993, pp. 560-570.

Crossrefs

See A058965 for continued fraction expansion. Cf. A000084, A000669.

Formula

This number, c, is defined by Product_{n=1..inf} (1-c^n)^(-A000669[n]) = 2.

A058965 Continued fraction expansion of series-parallel constant.

Original entry on oeis.org

0, 3, 1, 1, 3, 1, 1, 1, 1, 3, 1, 3, 12, 1, 8, 8, 1, 7, 6, 1, 5, 2, 1, 1, 4, 1, 3, 2, 36, 1, 10, 6, 1, 2
Offset: 0

Views

Author

N. J. A. Sloane, E. M. Rains, Jan 14 2001

Keywords

Examples

			Constant is 0.2808326669842003553932...
		

References

  • J. W. Moon, Some enumerative results on series-parallel networks, Annals Discrete Math., 33 (1987), 199-226.
  • J. Riordan and C. E. Shannon, The number of two-terminal series-parallel networks, J. Math. Phys., 21 (1942), 83-93. Reprinted in Claude Elwood Shannon: Collected Papers, edited by N. J. A. Sloane and A. D. Wyner, IEEE Press, NY, 1993, pp. 560-570.

Crossrefs

See A058964 for decimal expansion. Cf. A000084, A000669.

Formula

This number, c, is defined by Product_{n=1..inf} (1-c^n)^(-A000669[n]) = 2.

A000163 Series-parallel numbers.

Original entry on oeis.org

2, 8, 34, 136, 538, 2080, 7970, 30224, 113874, 426520, 1590338, 5906640, 21866794, 80725280, 297292610, 1092539736, 4007553922, 14675748416, 53663197698, 195962433328, 714734393378, 2603994002280, 9477643739746, 34463730424720
Offset: 2

Views

Author

Keywords

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 142.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Mathematica
    n = 25; s = 1/(1 - x) + O[x]^(n + 1); Do[s = s/(1 - x^k)^Coefficient[s, x^k] + O[x]^(n + 1), {k, 2, n}] ; S = s - 1; CoefficientList[2*(1 + S)/(1 - S)^3 + O[x]^n, x] (* Jean-François Alcover, Feb 09 2016 *)

Formula

G.f.: 2*(1+S)/(1-S)^3, where S = g.f. for A000084. [Sean A. Irvine, Oct 14 2009]

Extensions

More terms from Sean A. Irvine, Oct 14 2009

A046906 Number of connected irreducible posets with n labeled points.

Original entry on oeis.org

1, 1, 0, 0, 24, 1080, 52440, 3281880, 277953144, 32418855000, 5239070305080, 1173944480658840, 363936227764858584, 155521768202208047640, 91218870039317505477720, 73113879800794757415243480, 79743817918540500914682249144, 117883366412734188786535902826200, 235329353612778837110901775412557560
Offset: 0

Views

Author

John A. Wright

Keywords

References

  • J. A. Wright, There are 718 6-point topologies, quasi-orderings and transgraphs, Notices Amer. Math. Soc., 17 (1970), p. 646, Abstract #70T-A106.

Crossrefs

A003431 gives isomorphism classes of these posets.

Programs

  • Mathematica
    nn = 18; A[x_] := Total[Cases[Import["https://oeis.org/A001035/b001035.txt",
          "Table"], {, }][[All, 2]]*Table[x^(i - 1)/(i - 1)!, {i, 1, 19}]];
    Range[0, nn]! CoefficientList[ Series[(1 + Log[A[x]]) - A[ x] (1 - 1/A[x])^2 , {x, 0, nn}], x] (* Geoffrey Critzer, Jul 09 2022 *)

Formula

From Geoffrey Critzer, Jul 09 2022: (Start)
E.g.f.: 1 + log(A(x)) - A(x)(1-1/A(x))^2 where A(x) is the e.g.f. for A001035.
a(n) = A001927(n) - Sum_{k>=2} A354615(n,k). (End)

Extensions

a(8)-a(18) from Geoffrey Critzer, Jul 09 2022
a(0) changed to 1 by Geoffrey Critzer, Jul 10 2022

A352213 Largest number of maximal cographical node-induced subgraphs of an n-node graph.

Original entry on oeis.org

1, 1, 1, 4, 10, 12, 23, 38, 64
Offset: 1

Views

Author

Pontus von Brömssen, Mar 08 2022

Keywords

Comments

This sequence is log-superadditive, i.e., a(m+n) >= a(m)*a(n). By Fekete's subadditive lemma, it follows that the limit of a(n)^(1/n) exists and equals the supremum of a(n)^(1/n).

Examples

			All graphs with at most three nodes are cographs, so a(n) = 1 for n <= 3 and any graph is optimal.
All optimal graphs (i.e., graphs that have n nodes and a(n) maximal cographical subgraphs) for 4 <= n <= 9 are listed below. Since a graph is a cograph if and only if its complement is a cograph, the optimal graphs come in complementary pairs.
  n = 4: the path of length 3 (self-complementary);
  n = 5: the 5-cycle (self-complementary);
  n = 6: the Hajós graph (also known as a Sierpiński sieve graph) and its complement;
  n = 7: the elongated triangular pyramid and its complement;
  n = 8: the Möbius ladder and its complement (the antiprism graph);
  n = 9: the pentagonal bipyramid with an additional path of length 3 between the two apex nodes (self-complementary).
		

Crossrefs

For a list of related sequences, see cross-references in A342211.

Formula

a(m+n) >= a(m)*a(n).
Limit_{n->oo} a(n)^(1/n) >= 64^(1/9) = 1.58740... .
Previous Showing 31-40 of 44 results. Next