cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A340915 Number of ways to write n as an ordered sum of 8 squares of positive integers.

Original entry on oeis.org

1, 0, 0, 8, 0, 0, 28, 0, 8, 56, 0, 56, 70, 0, 168, 64, 28, 280, 84, 168, 280, 176, 420, 224, 345, 560, 392, 616, 420, 848, 924, 336, 1246, 1064, 868, 1464, 988, 1680, 1820, 1120, 1904, 2464, 1932, 1904, 2870, 2752, 2772, 2912, 2892, 4256, 3640, 3248, 4480, 5040, 4760, 3696, 6120
Offset: 8

Views

Author

Ilya Gutkovskiy, Jan 31 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember;
          `if`(n=0, `if`(t=0, 1, 0), `if`(t<1, 0, add((s->
          `if`(s>n, 0, b(n-s, t-1)))(j^2), j=1..isqrt(n))))
        end:
    a:= n-> b(n, 8):
    seq(a(n), n=8..64);  # Alois P. Heinz, Jan 31 2021
  • Mathematica
    nmax = 64; CoefficientList[Series[(EllipticTheta[3, 0, x] - 1)^8/256, {x, 0, nmax}], x] // Drop[#, 8] &

Formula

G.f.: (theta_3(x) - 1)^8 / 256, where theta_3() is the Jacobi theta function.

A341397 Number of integer solutions to (x_1)^2 + (x_2)^2 + ... + (x_8)^2 <= n.

Original entry on oeis.org

1, 17, 129, 577, 1713, 3729, 6865, 12369, 21697, 33809, 47921, 69233, 101041, 136209, 174737, 231185, 306049, 384673, 469457, 579217, 722353, 876465, 1025649, 1220337, 1481521, 1733537, 1979713, 2306753, 2697537, 3087777, 3482913, 3959585, 4558737, 5155473
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 10 2021

Keywords

Comments

Partial sums of A000143.

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1, `if`(n<0 or k<1, 0,
          b(n, k-1)+2*add(b(n-j^2, k-1), j=1..isqrt(n))))
        end:
    a:= proc(n) option remember; b(n, 8)+`if`(n>0, a(n-1), 0) end:
    seq(a(n), n=0..33);  # Alois P. Heinz, Feb 10 2021
  • Mathematica
    nmax = 33; CoefficientList[Series[EllipticTheta[3, 0, x]^8/(1 - x), {x, 0, nmax}], x]
    Table[SquaresR[8, n], {n, 0, 33}] // Accumulate
  • Python
    from math import prod
    from sympy import factorint
    def A341397(n): return (sum((prod((p**(3*(e+1))-(1 if p&1 else 15))//(p**3-1) for p, e in factorint(m).items()) for m in range(1,n+1)))<<4)+1 # Chai Wah Wu, Jun 21 2024

Formula

G.f.: theta_3(x)^8 / (1 - x).
a(n^2) = A055414(n).

A276285 Number of ways of writing n as a sum of 13 squares.

Original entry on oeis.org

1, 26, 312, 2288, 11466, 41808, 116688, 265408, 535704, 1031914, 1899664, 3214224, 5043376, 7801744, 12066912, 17689152, 24443978, 34039200, 48210760, 64966096, 83323344, 109157152, 145532816, 185245632, 227110416, 284788010, 363737712
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 27 2016

Keywords

Comments

More generally, the ordinary generating function for the number of ways of writing n as a sum of k squares is theta_3(0, q)^k = 1 + 2*k*q + 2*(k - 1)*k*q^2 + (4/3)*(k - 2)*(k - 1)*k*q^3 + (2/3)*((k - 3)*(k - 2)*(k - 1) + 3)*k*q^4 + (4/15) *(k - 1)*k*(k^3 - 9*k^2 + 26*k - 9)*q^5 + ..., where theta is the Jacobi theta functions.

Crossrefs

13th column of A286815. - Seiichi Manyama, May 27 2017
Row d=13 of A122141.
Cf. Number of ways of writing n as a sum of k squares: A004018 (k = 2), A005875 (k = 3), A000118 (k = 4), A000132 (k = 5), A000141 (k = 6), A008451 (k = 7), A000143 (k = 8), A008452 (k = 9), A000144 (k = 10), A008453 (k = 11), A000145 (k = 12), this sequence (k = 13), A000152 (k = 16).

Programs

  • Mathematica
    Table[SquaresR[13, n], {n, 0, 26}]

Formula

G.f.: theta_3(0,q)^13, where theta_3(x,q) is the third Jacobi theta function.
a(n) = (26/n)*Sum_{k=1..n} A186690(k)*a(n-k), a(0) = 1. - Seiichi Manyama, May 27 2017

A340999 Number of partitions of n into 8 distinct nonzero squares.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 2, 0, 0, 1, 0, 1, 0, 0, 2, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 3, 0, 0, 1
Offset: 204

Views

Author

Ilya Gutkovskiy, Feb 02 2021

Keywords

Crossrefs

A008430 Theta series of D_8 lattice.

Original entry on oeis.org

1, 112, 1136, 3136, 9328, 14112, 31808, 38528, 74864, 84784, 143136, 149184, 261184, 246176, 390784, 395136, 599152, 550368, 859952, 768320, 1175328, 1078784, 1513152, 1362816, 2096192, 1764112, 2496928, 2289280, 3208832, 2731680, 4007808, 3336704
Offset: 0

Views

Author

Keywords

Examples

			1 + 112*q^2 + 1136*q^4 + 3136*q^6 + 9328*q^8 + ...
		

Crossrefs

Cf. A000143, A008427 (dual), A109773.

Programs

  • Mathematica
    a[n_] := 16*DivisorSum[n, #^3*(8 - Mod[#, 2]) &]; a[0] = 1; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Dec 02 2015, adapted from PARI *)
  • PARI
    {a(n)=if(n<1, n==0, 16*sumdiv(n, d, d^3*(8-d%2)))} /* Michael Somos, Nov 03 2006 */
    
  • PARI
    {a(n)=if(n<0, 0, n*=2; polcoeff( sum(k=1, sqrtint(n), 2*x^k^2, 1+x*O(x^n))^8, n))} /* Michael Somos, Nov 03 2006 */

Formula

G.f.: (theta_3(q^(1/2))^8 + theta_4(q^(1/2))^8)/2.
a(n) = A000143(2n).

A209942 Expansion of (psi(-x) * phi(x)^4)^2 in powers of x where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, 14, 81, 238, 322, 0, -429, -82, 0, -2162, -3038, 1134, 2401, -2482, 0, 6958, 3332, 0, 1442, 0, 6561, 4508, -9758, 0, -1918, -18802, 0, -9362, -24638, 19278, 14641, -14756, 0, 0, 6562, 0, -1148, 33998, 26082, 20398, 0, 0, 28083, -49042, 0, 64078, -30268, 0
Offset: 0

Views

Author

Michael Somos, Mar 16 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number 60 of the 74 eta-quotients listed in Table I of Martin (1996).

Examples

			G.f. = 1 + 14*x + 81*x^2 + 238*x^3 + 322*x^4 - 429*x^6 - 82*x^7 - 2162*x^9 + ...
G.f. = q + 14*q^5 + 81*q^9 + 238*q^13 + 322*q^17 - 429*q^25 - 82*q^29 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ x^2]^19 / (QPochhammer[ x] QPochhammer[ x^4])^7)^2, {x, 0, n}]; (* Michael Somos, Jun 09 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( ( eta(x^2 + A)^19 / (eta(x + A) * eta(x^4 + A) )^7 )^2, n))};

Formula

Expansion of q^(-1/4) * ( eta(q^2)^19 / (eta(q) * eta(q^4) )^7 )^2 in powers of q.
Euler transform of period 4 sequence [ 14, -24, 14, -10, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (64 t)) = 32768 (t/i)^5 f(t) where q = exp(2 Pi i t).
a(n) = b(4*n + 1) where b(n) is multiplicative and b(2^e) = 0^e, b(p^e) = (1 + (-1)^e) / 2 * p^(2*e) if p == 3 (mod 4), b(p^e) = b(p) * b(p^(e-1)) - p^4 * b(p^(e-2)) otherwise.
a(9*n + 5) = a(9*n + 8) = 0. a(9*n + 2) = 81 * a(n). Convolution of A000143 and A134343.
Convolution square of A258771. - Michael Somos, Jun 09 2015

A004409 Expansion of ( Sum_{n = -infinity..infinity} x^(n^2) )^(-8).

Original entry on oeis.org

1, -16, 144, -960, 5264, -25056, 106944, -418176, 1520784, -5201232, 16871648, -52252992, 155341248, -445226848, 1234726272, -3323392128, 8704504976, -22234655520, 55498917840, -135595345600, 324759439584
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[((1 + (-x)^k)/(1 - (-x)^k))^8, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 18 2015 *)
  • PARI
    q='q+O('q^99); Vec(((eta(q)*eta(q^4))^2/eta(q^2)^5)^8) \\ Altug Alkan, Sep 20 2018

Formula

a(n) ~ (-1)^n * exp(2*Pi*sqrt(2*n)) / (64*2^(3/4)*n^(11/4)). - Vaclav Kotesovec, Aug 18 2015
From Ilya Gutkovskiy, Sep 20 2018: (Start)
G.f.: 1/theta_3(x)^8, where theta_3() is the Jacobi theta function.
G.f.: Product_{k>=1} 1/((1 - x^(2*k))*(1 + x^(2*k-1))^2)^8. (End)

A177155 G.f.: exp( Integral (theta_3(x)^8-1)/(16x) dx ), where theta_3(x) = 1 + Sum_{n>=1} 2*x^(n^2) is a Jacobi theta function.

Original entry on oeis.org

1, 1, 4, 13, 35, 87, 217, 539, 1291, 2999, 6880, 15595, 34738, 76202, 165282, 354655, 752546, 1580514, 3289337, 6787085, 13887937, 28195434, 56824772, 113729640, 226104615, 446665922, 877063515, 1712252521, 3324245063, 6419561961
Offset: 0

Views

Author

Paul D. Hanna, May 03 2010, May 08 2010

Keywords

Comments

Compare to g.f. of partitions in which no parts are multiples of 4:
g.f. of A001935 = exp( Integral (theta_3(x)^4-1)/(8x) dx ).

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 13*x^3 + 35*x^4 + 87*x^5 +...
log(A(x)) = x + 7*x^2/2 + 28*x^3/3 + 71*x^4/4 + 126*x^5/5 +...+ A008457(n)*x^n/n +...
		

Crossrefs

Programs

  • Mathematica
    nmax = 40; Abs[CoefficientList[Series[Product[1/(1 - x^k)^((-1)^k*k^2), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Apr 10 2019 *)
    nmax = 40; CoefficientList[Series[Product[(1 + x^(2*k - 1))^((2*k - 1)^2)/(1 - x^(2*k))^(4*k^2), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 10 2019 *)
  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n, sumdiv(m,d,(-1)^(m-d)*d^3)*x^m/m)+x*O(x^n)),n)}
    
  • PARI
    {a(n)=local(theta3=1+sum(m=1,sqrtint(2*n+2),2*x^(m^2)+x*O(x^n)));polcoeff(exp(intformal((theta3^8-1)/(16*x))),n)}

Formula

G.f.: exp( Sum_{n>=1} A008457(n)*x^n/n ) where A008457(n) = Sum_{d|n} (-1)^(n-d)*d^3.
a(n) ~ exp(2*Pi*n^(3/4)/3 - Zeta(3)/Pi^2) / (4*n^(5/8)). - Vaclav Kotesovec, Apr 10 2019

A166947 Number of ways of writing n as the sum of 2^n squares.

Original entry on oeis.org

1, 4, 24, 448, 29152, 6448000, 4799359488, 12099984537600, 104875315518635520, 3178565207840143938560, 342288453932192597037125632, 132776310046929259464457969090560
Offset: 0

Views

Author

Paul D. Hanna, Oct 25 2009

Keywords

Examples

			G.f.: A(x) = 1 + 4*x + 24*x^2 + 448*x^3 + 29152*x^4 + 6448000*x^5 +...
Let F(x) = theta_3(x) = 1 + 2*Sum_{n>=1} x^(n^2),
then A(x) = 1 + log(F(2*x)) + log(F(4*x))^2/2! + log(F(8*x))^3/3! + ...
Illustrate a(n) = [x^n] F(x)^(2^n) by forming a table of
coefficients in powers F(x)^(2^n), which begin:
F^(2^0): [(1), 2, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, ...];
F^(2^1): [1, (4), 4, 0, 4, 8, 0, 0, 4, 4, 8, 0, 0, 8, 0, 0, ...];
F^(2^2): [1, 8, (24), 32, 24, 48, 96, 64, 24, 104, 144, 96, ...];
F^(2^3): [1, 16, 112, (448), 1136, 2016, 3136, 5504, 9328, ...];
F^(2^4): [1, 32, 480, 4480, (29152), 140736, 525952, 1580800, ...];
F^(2^5): [1, 64, 1984, 39680, 575424, (6448000), 58115328, ...];
F^(2^6): [1, 128, 8064, 333312, 10166144, 244000512, (4799359488), ...];
F^(2^7): [1, 256, 32512, 2731008, 170688256, 8466189824, 347119309824, (12099984537600), ...]; ...
and noting that the coefficients along the diagonal (in parenthesis)
form the initial terms of this sequence.
		

Crossrefs

Cf. variant: A166953 (n as the sum of 3^n squares). [From Paul D. Hanna, Oct 26 2009]

Programs

  • PARI
    {a(n)=local(THETA3=1+2*sum(k=1,sqrtint(n),x^(k^2))+x*O(x^n));polcoeff(THETA3^(2^n),n)}
    
  • PARI
    {a(n)=local(THETA3=1+2*sum(k=1,sqrtint(n),x^(k^2))+x*O(x^n)); polcoeff(sum(k=0,n,log(subst(THETA3,x,2^k*x))^k/k!),n)}

Formula

a(n) equals the coefficient of x^n in the (2^n)-th power of Jacobi theta_3(x).
G.f.: A(x) = Sum_{n>=0} log( theta_3(2^n*x) )^n/n! where theta_3(x) = 1 + 2*Sum_{n>=1} x^(n^2).

A374493 Number of ways of writing n^2 as a sum of 8 squares.

Original entry on oeis.org

1, 16, 1136, 12112, 74864, 252016, 859952, 1887888, 4793456, 8830096, 17893136, 28366288, 56672048, 77264112, 134040048, 190776112, 306783344, 386279728, 626936816, 752843856, 1179182864, 1429131216, 2014006448, 2368768912, 3628646192, 3937752016, 5485751952
Offset: 0

Views

Author

Seiichi Manyama, Jul 12 2024

Keywords

Crossrefs

Column k=8 of A302996.
Cf. A000143.

Programs

  • Mathematica
    SquaresR[8, Range[0,30]^2] (* Paolo Xausa, Aug 21 2025 *)
  • PARI
    a000143(n) = if(n==0, 1, 16*sumdiv(n, d, (-1)^(n+d)*d^3));
    a(n) = a000143(n^2);

Formula

a(n) = [x^(n^2)] (Sum_{j=-n..n} x^(j^2))^8.
a(n) = A000143(n^2).
a(n) is divisible by 16 for n > 0.
Previous Showing 11-20 of 20 results.