cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A186266 Expansion of 2F1( 1/2, 3/2; 4; 16*x ).

Original entry on oeis.org

1, 3, 18, 140, 1260, 12474, 132132, 1472328, 17065620, 204155380, 2506399896, 31443925968, 401783498480, 5215458874500, 68633685693000, 914099013896400, 12304253831789700, 167193096184907100, 2291164651422801000, 31637804708163654000, 439903041116118980400
Offset: 0

Views

Author

Olivier Gérard, Feb 16 2011

Keywords

Comments

Combinatorial interpretation welcome.
Could involve planar maps, lattice walks, and interpretations of Catalan numbers.

Crossrefs

Formula close to A000257, A000888, A172392.
Cf. A000108.

Programs

  • Mathematica
    CoefficientList[
    Series[HypergeometricPFQ[{1/2, 3/2}, {4}, 16*x], {x, 0, 20}], x]
    Table[3 CatalanNumber[n] CatalanNumber[n+1] * (n+1) / (n+3), {n, 0, 20}] (* Indranil Ghosh, Mar 05 2017 *)
  • PARI
    c(n) = binomial(2*n,n) / (n+1);
    a(n) = 3 * c(n) * c(n+1) *(n+1) / (n+3); \\ Indranil Ghosh, Mar 05 2017
    
  • Python
    import math
    f=math.factorial
    def C(n,r): return f(n) / f(r) / f(n-r)
    def Catalan(n): return C(2*n, n) / (n+1)
    def A186266(n): return 3 * Catalan(n) * Catalan(n+1) * (n+1) / (n+3) # Indranil Ghosh, Mar 05 2017

Formula

a(n) = 3*A000108(n)*A000108(n+1)*(n+1)/(n+3). - David Scambler, Aug 18 2012
D-finite with recurrence n*(n+3)*a(n) -4*(2*n-1)*(2*n+1)*a(n-1)=0. - R. J. Mathar, Jun 17 2016

A275607 a(n) = 2*12^n*Gamma(n+1/2)*(n+1)/(sqrt(Pi)*Gamma(n+3)).

Original entry on oeis.org

1, 4, 27, 216, 1890, 17496, 168399, 1667952, 16888014, 173997720, 1818276174, 19225409616, 205299909828, 2210922105840, 23984556773175, 261854925711840, 2874948871877910, 31722346066169880, 351589335566716170, 3912422681494285200, 43694647856506630620, 489597172255515289680
Offset: 0

Views

Author

Karol A. Penson, Nov 14 2016

Keywords

Comments

In reference of K. Szymanski et al. the function g(x) from the Eq.(4.6) satisfies the equality g(x/4)/4 = W(x) where W(x) is the weight function of the integral representation, see below.

Crossrefs

Programs

  • Maple
    a := n -> (2^(2*n+1)*3^n*(n+1)*GAMMA(n+1/2))/(sqrt(Pi)*GAMMA(n+3)):
    seq(a(n), n=0..21); # Peter Luschny, Nov 14 2016
  • Mathematica
    g[z_] :=  E^z (BesselI[0,z] - (1-1/z) BesselI[1,z])
    Table[CoefficientList[2/3 Series[g[6z], {z,0,21}],z]] Range[0, 21]! //Flatten (* Peter Luschny, Nov 14 2016 *)
    Table[ 2*12^n*(n + 1)*Gamma[n + 1/2]/(Sqrt[Pi]*Gamma[n + 3]), {n,0,100}] (* G. C. Greubel, Jan 13 2017 *)
  • PARI
    a(n)=2*12^n*gamma(n+1/2)*(n+1)\/(sqrt(Pi)*(n+2)!) \\ Charles R Greathouse IV, Nov 14 2016
    
  • PARI
    a(n)=2*3^n*binomial(2*n+1,n-1)*(n+1)/(2*n+1)/n \\ Charles R Greathouse IV, Nov 14 2016

Formula

O.g.f: (1/54)*(1-(6*z+1)*sqrt(1-12*z))/z^2;
E.g.f.(in Maple notation): (1/9)*exp(6*z)*(6*z*(BesselI(0,6*z)-BesselI(1,6*z))+ BesselI(1,6*z))/z;
Recurrence: (-12*n^2-54*n-54)*a(n+1)+(n^2+6*n+8)*a(n+2)=0, n=0,1..., for the initial values a(0)=1, a(1)=4.
Integral representation as the n-th Hausdorff moment of the positive function W(x) on the segment x=(0,12), i.e., a(n) = Integral_{x=0..12} x^n*W(x) dx, where W(x) = (1/27)*sqrt(12-x)*(3+(1/2)*x)/(Pi*sqrt(x)). This representation is unique.
a(n) ~ 2^(2*n+1)*3^n/(sqrt(Pi)*n^(3/2)). - Ilya Gutkovskiy, Nov 14 2016
a(n) = 2*3^n*binomial(2n+1, n-1)*(n+1)/(2n^2+n). - Charles R Greathouse IV, Nov 14 2016

A331836 Number of noncrossing anti-commutator friendly partitions on {1,2,...,2n}.

Original entry on oeis.org

1, 5, 22, 117, 678, 4162, 26588, 174925, 1177158, 8064854, 56062804, 394443458, 2803490524, 20098913252, 145175116408, 1055463627197, 7717664983366, 56720231324046, 418757618733092, 3104269959560566
Offset: 1

Views

Author

Kamil Szpojankowski, Jan 28 2020

Keywords

Comments

Let n be a positive integer, let sigma be a noncrossing partition on {1,2,...,2n}. Consider the set OuterMax(sigma) := {max(W); W is an outer block of sigma}.
We say that sigma is anti-commutator friendly when it satisfies:
1) OuterMax(sigma) is a subset of the union of {1,3,...,2n-1} and {2n}.
2) For every j in {1, 3,...,2n-1} \ OuterMax(sigma), one has depth(j) is not equal to depth(j + 1), where depth(j) stands for the depth of the block of sigma which contains the number j.
For example for n=1 only partition {{1},{2}} is anti-commutator friendly.
Multiplied by two, gives sequence of Boolean cumulants of ab+ba, for a,b freely independent both distributed (delta_0+delta_2)/2. See M. Fevrier et al. Proposition 6.11.

Crossrefs

Cf. A000257.

Programs

  • Mathematica
    Rest[CoefficientList[Series[1/2 - Sqrt[(1 - 8*x)*(1 - Sqrt[1 - 8*x] - 2*x)/(8*x)], {x, 0, 20}], x]] (* Vaclav Kotesovec, Jan 29 2020 *)
  • PARI
    seq(n)={Vec(1/2 - sqrt((1 - 8*x)*(1-2*x-sqrt(1 - 8*x + O(x^2*x^n)))/(8*x)))} \\ Andrew Howroyd, Jan 28 2020

Formula

G.f.: 1/2 - sqrt( (1 - 8*z)*(1 - 2*z-sqrt(1-8*z))/(8*z) ).
G.f.: 1/2 - sqrt( 1/4 + 3*z - 4*z*g(z) ), where g(z) is the g.f. of A000257.
a(n) ~ sqrt(3) * 2^(3*n-2) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Jan 29 2020
D-finite with recurrence n*(2*n+1)*a(n) +2*(-11*n^2+17*n-3)*a(n-1) +24*(-n^2+7*n-8)*a(n-2) +32*(16*n^2-109*n+186)*a(n-3) +256*(n-4)*(2*n-9)*a(n-4)=0. - R. J. Mathar, Mar 06 2022

A361139 Number of rooted bipartite maps of genus 1/2 with n edges.

Original entry on oeis.org

0, 1, 9, 69, 510, 3738, 27405, 201569, 1488762, 11043318, 82257890, 615092178, 4615882908, 34752865332, 262437282621, 1987229885913
Offset: 1

Views

Author

R. J. Mathar, Mar 02 2023

Keywords

Crossrefs

Cf. A000257 (genus 0).

A361140 Number of rooted bipartite maps of genus 1 with n edges.

Original entry on oeis.org

0, 0, 4, 63, 720, 7254, 68460, 621315, 5496208, 47759130, 409620156, 3478672642, 29315742924, 245539064736, 2046309441924, 16983591315267
Offset: 1

Views

Author

R. J. Mathar, Mar 02 2023

Keywords

Crossrefs

Cf. A000257 (genus 0).
Previous Showing 21-25 of 25 results.