A329546
Triangle read by rows: T(n,k) is the number of colored digraphs on n nodes with exactly k colors arbitrarily assigned (1 <= k <= n).
Original entry on oeis.org
1, 3, 4, 16, 72, 64, 218, 2608, 6336, 4096, 9608, 272752, 1336320, 2113536, 1048576, 1540944, 93847104, 812045184, 2337046528, 2689597440, 1073741824, 882033440, 110518842048, 1580861402112, 7344135176192, 14676310097920, 13200581984256, 4398046511104
Offset: 1
First six rows:
1
3 4
16 72 64
218 2608 6336 4096
9608 272752 1336320 2113536 1048576
1540944 93847104 812045184 2337046528 2689597440 1073741824
n=4, k=2: Partitions: [3,1] and [2,2] with indices 2 and 3 and multiplicities 2 and 1: T(4,2) = Sum_{i=2,3} A072811(4,i)*A328773(4,i) = 2*752 + 1104 = 2608.
n=6, k=3: Partitions: [4,1,1], [3,2,1], [2,2,2] with indexes 4, 6, 8 and multiplicities 3, 6, 1: T(6,3) = Sum_{i=4,6,8} A072811(6,i)*A328773(6,i) = 3*45277312 + 6*90196736 + 1*135032832 = 812045184.
Cf.
A000273 (digraphs with one color),
A053763 (digraphs with n colors),
A328773 (digraphs to a given color scheme).
Cf.
A072811 (multiplicity of color schemes).
Cf.
A309980 (reflexive/anti-reflexive: just two colors).
-
\\ here C(p) computes A328773 sequence value for given partition.
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v) = {sum(i=2, #v, sum(j=1, i-1, 2*gcd(v[i], v[j]))) + sum(i=1, #v, v[i]-1)}
C(p)={((i, v)->if(i>#p, 2^edges(v), my(s=0); forpart(q=p[i], s+=permcount(q)*self()(i+1, concat(v, Vec(q)))); s/p[i]!))(1, [])}
\\ here mulp(v) computes the multiplicity of the given partition. (see A072811)
mulp(v) = {my(p=(#v)!, k=1); for(i=2, #v, k=if(v[i]==v[i-1], k+1, p/=k!; 1)); p/k!}
wC(p)=mulp(p)*C(p)
Row(n)={[vecsum(apply(wC, vecsort([Vecrev(p) | p<-partitions(n),#p==m], , 4))) | m<-[1..n]]}
{ for(n=0, 10, print(Row(n))) }
A343592
Number of symmetry types of digraphs with n nodes.
Original entry on oeis.org
1, 2, 4, 9, 14, 36
Offset: 1
The four symmetry types of the digraphs with 3 nodes are represented by:
1.) {}, the empty graph, has together with the full graph the automorphism group S_3 (as subgroup of S_3) as symmetry type.
2.) {(1,2)} has together with 6 other digraphs the trivial automorphism group {id} as symmetry type. This digraph class is called asymmetric. Their values are given by A051504.
3.) {(1,2),(2,1)} has together with 5 other digraphs the automorphism group containing id and a transposition (so it is C_2 as the subgroup of S_3) as symmetry type.
4.) {(1,2),(2,3),(3,1)} has as the only digraph with three nodes the automorphism group C_3 as symmetry type. As a consequence it has to be self-complementary.
The total of the sizes of the symmetry type classes yields the number of digraphs A000273. Here: 2+7+6+1 = 16 = A000273(3).
Note, that for n > 3 there may be different symmetry types with isomorphic automorphism groups. For n=4 both {(1,2)} and {(1,2),(3,4)} have C_2 as automorphism group, but they are different as permutation group.
A350911
Number of regular digraphs on n unlabeled nodes.
Original entry on oeis.org
1, 1, 2, 3, 6, 11, 56, 609, 39346, 8728237, 6126648298, 14487876826313
Offset: 0
A361583
Number of digraphs on n unlabeled nodes whose strongly connected components are complete digraphs.
Original entry on oeis.org
1, 1, 3, 12, 88, 1217, 34672, 2039085, 246005109, 60296886108, 29828186693218, 29663937774464786, 59172529527454608139, 236453014376786629601848, 1891427400988740573006253862, 30274661556583530830890359188257, 969429810937979825934973090455224882
Offset: 0
A054918
Number of connected unlabeled digraphs with n nodes such that complement is also connected.
Original entry on oeis.org
1, 1, 10, 180, 9120, 1520742, 878908844, 1791588717764, 13024366540532952, 341234368845828951004, 32522226812040344643993088, 11366680383641301437820379768750, 14669062959091969068110415719779627436
Offset: 1
-
A000273 = Cases[Import["https://oeis.org/A000273/b000273.txt", "Table"], {, }][[All, 2]];
A003085 = Cases[Import["https://oeis.org/A003085/b003085.txt", "Table"], {, }][[All, 2]];
a[n_] := 2*A003085[[n]] - A000273[[n + 1]];
Array[a, 50] (* Jean-François Alcover, Aug 31 2019 *)
-
from functools import lru_cache
from itertools import product, combinations
from fractions import Fraction
from math import prod, gcd, factorial
from sympy import mobius, divisors
from sympy.utilities.iterables import partitions
def A054918(n):
@lru_cache(maxsize=None)
def b(n): return int(sum(Fraction(1<Chai Wah Wu, Jul 05 2024
A054932
Number of unlabeled connected digraphs up to complementarity.
Original entry on oeis.org
1, 1, 7, 95, 4628, 760731, 439476534, 895794710762, 6512183359880844, 170617184427498641390, 16261113406024864291983616, 5683340191820651519596089554647, 7334531479545984537334675978032833750, 35157813638509073199087893774184443496308877
Offset: 1
-
A054932 := proc(n)
A003085(n)-(A000273(n)-A003086(n))/2 ;
end proc:
seq(A054932(n),n=1..13) ; # R. J. Mathar, Mar 04 2018
-
A000273 = Cases[Import["https://oeis.org/A000273/b000273.txt", "Table"], {, }][[All, 2]];
A003085 = Cases[Import["https://oeis.org/A003085/b003085.txt", "Table"], {, }][[All, 2]];
A003086 = Cases[Import["https://oeis.org/A003086/b003086.txt", "Table"], {, }][[All, 2]];
a[n_] := A003085[[n]] - (A000273[[n + 1]] - A003086[[n]])/2;
Array[a, 50] (* Jean-François Alcover, Sep 01 2019 *)
A067309
Number of symmetric unlabeled digraphs (unlabeled digraphs with nontrivial automorphism group).
Original entry on oeis.org
0, 0, 2, 9, 82, 1607, 95647, 18545153
Offset: 0
For n=4 nodes from the 218 (=A000273(4)) unlabeled nonisomorphic digraphs 136 (=A051504(4)) are asymmetric, so 218 - 136 = 82 are somehow symmetric.
A199012
The total number of edges in all unlabeled directed graphs (no self loops allowed) on n nodes.
Original entry on oeis.org
0, 3, 48, 1308, 96080, 23114160, 18522702240, 50214057399744, 469006445678383872, 15356719437883766115840, 1788760016178073736115859200, 750205198434476437912637004278784, 1144188684031608529784893493874665232384, 6398724751986384956446081096594171272300830720
Offset: 1
-
b:= proc(n, i, l) `if`(n=0 or i=1, 1/n!*2^((p-> add(p[j]-1+add(
igcd(p[k], p[j]), k=1..j-1)*2, j=1..nops(p)))([l[], 1$n])),
add(b(n-i*j, i-1, [l[], i$j])/j!/i^j, j=0..n/i))
end:
a:= n-> b(n$2, [])*n*(n-1)/2:
seq(a(n), n=1..16); # Alois P. Heinz, Sep 04 2019
-
Table[D[GraphPolynomial[n,x,Directed],x]/.x->1, {n,1,15}]
(* Second program: *)
permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
edges[v_, t_] := Product[g = GCD[v[[i]], v[[j]]]; t[v[[i]]*v[[j]]/g]^(2*g), {i, 2, Length[v]}, {j, 1, i - 1}] * Product[ t[v[[i]]]^(v[[i]] - 1), {i, 1, Length[v]}]
a[n_] := (s = 0; Do[s += permcount[p]*(D[edges[p, 1 + x^# &], x] /. x -> 1), {p, IntegerPartitions[n]}]; s/n!);
Array[a, 15] (* Jean-François Alcover, Jul 08 2018, after Andrew Howroyd *)
-
permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
edges(v,t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i],v[j])); t(v[i]*v[j]/g)^(2*g))) * prod(i=1, #v, t(v[i])^(v[i]-1))}
a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*subst(deriv(edges(p,i->1+x^i)),x,1)); s/n!} \\ Andrew Howroyd, Nov 05 2017
-
from itertools import combinations
from math import prod, factorial, gcd
from fractions import Fraction
from sympy.utilities.iterables import partitions
def A199012(n): return (n*(n-1)>>1)*int(sum(Fraction(1<Chai Wah Wu, Jul 05 2024
A222420
Number of unlabeled general directed hypergraphs of order n.
Original entry on oeis.org
2, 10, 752, 179228736, 10074382205972351614976
Offset: 1
The 10 non-isomorphic directed hypergraphs of order 2 are as follows (these are their arc sets): {<1,0>, <2,0>}, {<1, {2}>, <2, {1}>}, {<1, {2}>, <1,0>, <2, {1}>, <2,0>}, {<1, {2}>}, {<1, {2}>, <1,0>}, {<1, {2}>, <1,0>, <2, {1}>}, {<1,0>}, {<1, {2}>, <2,0>}, {<1, {2}>, <1,0>, <2,0>}, 0.
A222421
Number of unlabeled 3-uniform directed hypergraphs of order n.
Original entry on oeis.org
1, 1, 4, 218, 8978144, 1601285885249024, 8048575244466823237217930240
Offset: 1
Comments