A000390
Number of 5-dimensional partitions of n.
Original entry on oeis.org
1, 6, 21, 71, 216, 657, 1907, 5507, 15522, 43352, 119140, 323946, 869476, 2308071, 6056581, 15724170, 40393693, 102736274, 258790004, 645968054, 1598460229, 3923114261, 9554122089, 23098084695, 55458417125, 132293945737, 313657570114
Offset: 1
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Suresh Govindarajan, Table of n, a(n) for n = 1..30
- A. O. L. Atkin, P. Bratley, I. G. McDonald and J. K. S. McKay, Some computations for m-dimensional partitions, Proc. Camb. Phil. Soc., 63 (1967), 1097-1100. [Annotated scanned copy]DOI
- S. Balakrishnan, S. Govindarajan and N. S. Prabhakar, On the asymptotics of higher-dimensional partitions, arXiv:1105.6231 [cond-mat.stat-mech], 2011.
- S. P. Naveen, On The Asymptotics of Some Counting Problems in Physics, Thesis, Bachelor of Technology, Department of Physics, Indian Institute of Technology, Madras, May 2011.
-
trans[x_] := If[x == {}, {}, Transpose[x]];
levptns[n_, k_] :=
If[k == 1, IntegerPartitions[n],
Join @@ Table[
Select[Tuples[levptns[#, k - 1] & /@ y],
And @@ (GreaterEqual @@@
trans[Flatten /@ (PadRight[#,
ConstantArray[n, k - 1]] & /@ #)]) &], {y,
IntegerPartitions[n]}]];
Table[levptns[n, 5] // Length, {n, 1, 7}] (* Robert P. P. McKone, Dec 18 2020 *)
A096576
Number of solid partitions asymmetric under rotation operation.
Original entry on oeis.org
0, 1, 3, 8, 19, 46, 101, 226, 486, 1038, 2163, 4471, 9077, 18260, 36258
Offset: 1
Solid partition [{{3, 1, 1, 1}, {3}}, {{2, 1}}, {{1}}, {{1}}, {{1}}] rotates into [{{4, 1}, {1, 1}, {1, 1}}, {{2}, {1}}, {{1}}, {{1}}, {{1}}] by rotating each layer as a plane partition.
Cf.
A000293,
A094504,
A094508,
A096272,
A096573,
A096574,
A096575,
A096577,
A096578,
A096579,
A096580,
A096581.
A096578
Number of solid partitions with period (cycle length) two under 'time-lapse' operation.
Original entry on oeis.org
0, 0, 1, 1, 1, 2, 3, 6, 7, 11, 15, 25, 33, 48, 65
Offset: 1
Solid partition [{{3,1,1,1},{3}},{{2,1}},{{1}},{{1}},{{1}}] lapses (L) into
[{{4,1},{2},{1},{1},{1}},{{1,1},{1}},{{1,1}}], then into
[{{2,1,1,1,1},{2,1},{2}},{{1,1}},{{1}},{{1}}], further into
[{{5,2,1},{2},{1},{1}},{{1,1,1}}] and returns after L^4 to
[{{3,1,1,1},{3}},{{2,1}},{{1}},{{1}},{{1}}]
Cf.
A000293,
A094504,
A094508,
A096272,
A096573,
A096574,
A096575,
A096576,
A096577,
A096579,
A096580,
A096581.
A096581
Number of solid partitions non-symmetric under L^2 (L= 'time-lapse' symmetry operation) on solid partitions.
Original entry on oeis.org
0, 2, 4, 12, 28, 68, 150, 336, 724, 1550, 3234, 6688, 13590, 27354, 54334
Offset: 1
Solid partition [{{3,1,1,1},{3}},{{2,1}},{{1}},{{1}},{{1}}] lapses (L) into
[{{4,1},{2},{1},{1},{1}},{{1,1},{1}},{{1,1}}], then into
[{{2,1,1,1,1},{2,1},{2}},{{1,1}},{{1}},{{1}}], further into
[{{5,2,1},{2},{1},{1}},{{1,1,1}}] and returns after L^4 to
[{{3,1,1,1},{3}},{{2,1}},{{1}},{{1}},{{1}}]
Cf.
A000293,
A094504,
A094508,
A096272,
A096573,
A096574,
A096575,
A096576,
A096577,
A096578,
A096579,
A096580.
A116672
Triangle read by rows in which the binomial transform of the n-th row gives the Euler transform of the n-th diagonal of Pascal's triangle (A007318).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 6, 11, 7, 1, 1, 10, 27, 29, 12, 1, 1, 14, 57, 96, 72, 21, 1, 1, 21, 117, 277, 319, 176, 38, 1
Offset: 1
Row 6 is 1 10 27 29 12 1 generating 1 11 48 141 ... (A008780) the seventh term in the Euler transforms of 1,1,1,...; 1,2,3,...; 1,3,6,... 1,4,10,... etc.
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 4, 4, 1;
1, 6, 11, 7, 1;
1, 10, 27, 29, 12, 1;
1, 14, 57, 96, 72, 21, 1;
1, 21, 117, 277, 319, 176, 38, 1;
...
A002835
Solid partitions of n which are restricted to two planes.
Original entry on oeis.org
1, 1, 4, 9, 22, 46, 102, 206, 427, 841, 1658, 3173, 6038, 11251, 20807, 37907, 68493, 122338, 216819, 380637, 663417, 1147033, 1969961, 3359677, 5694592, 9592063, 16065593, 26756430, 44328414
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
See
A000293 for unrestricted solid partitions.
More terms from Pab Ter (pabrlos(AT)yahoo.com), May 08 2004
A323657
Number of strict solid partitions of n.
Original entry on oeis.org
1, 1, 1, 4, 4, 7, 16, 19, 28, 40, 82, 94, 145, 190, 274, 463, 580, 802, 1096, 1486, 1948, 3148, 3811, 5314, 6922, 9394, 11971, 16156, 23044, 28966, 38368, 50002, 65116, 83872, 108706, 137917, 192070, 236242, 308698, 390772, 506935, 633982, 817324, 1018090
Offset: 0
The a(1) = 1 through a(6) = 16 strict solid partitions, represented as chains of chains of integer partitions:
((1)) ((2)) ((3)) ((4)) ((5)) ((6))
((21)) ((31)) ((32)) ((42))
((2)(1)) ((3)(1)) ((41)) ((51))
((2))((1)) ((3))((1)) ((3)(2)) ((321))
((4)(1)) ((4)(2))
((3))((2)) ((5)(1))
((4))((1)) ((31)(2))
((32)(1))
((4))((2))
((5))((1))
((31))((2))
((3)(2)(1))
((32))((1))
((3)(1))((2))
((3)(2))((1))
((3))((2))((1))
Cf.
A000219,
A000293 (solid partitions),
A000334,
A001970,
A002974,
A008289,
A114736,
A117433 (strict plane partitions),
A207542,
A321662,
A323657.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
ptnplane[n_]:=Union[Map[Reverse@*primeMS,Join@@Permutations/@facs[n],{2}]];
strplptns[n_]:=Join@@Table[Select[ptnplane[Times@@Prime/@y],And[And@@GreaterEqual@@@#,And@@(GreaterEqual@@@Transpose[PadRight[#]])]&],{y,Select[IntegerPartitions[n],UnsameQ@@#&]}]
Table[Length[Join@@Table[Select[Tuples[strplptns/@y],And[UnsameQ@@Flatten[#],And@@(GreaterEqual@@@Transpose[Join@@@(PadRight[#,{n,n}]&/@#)])]&],{y,IntegerPartitions[n]}]],{n,10}]
A002974
Number of restricted solid partitions of n.
Original entry on oeis.org
1, 1, 4, 7, 11, 20, 35, 59, 99, 165, 270, 443, 723, 1161, 1861, 2961, 4654, 7279, 11317, 17476, 26879, 41132, 62601, 94878, 143172, 215115, 321995, 480216, 713655, 1057192
Offset: 1
From _Gus Wiseman_, Jan 22 2019: (Start)
The a(1) = 1 through a(6) = 20 restricted solid partitions, represented as chains of chains of integer partitions:
((1)) ((2)) ((3)) ((4)) ((5)) ((6))
((21)) ((31)) ((32)) ((42))
((2)(1)) ((3)(1)) ((41)) ((51))
((2))((1)) ((21)(1)) ((3)(2)) ((321))
((3))((1)) ((4)(1)) ((4)(2))
((21))((1)) ((31)(1)) ((5)(1))
((2)(1))((1)) ((3))((2)) ((31)(2))
((4))((1)) ((32)(1))
((31))((1)) ((41)(1))
((3)(1))((1)) ((4))((2))
((21)(1))((1)) ((5))((1))
((31))((2))
((3)(2)(1))
((32))((1))
((41))((1))
((3)(1))((2))
((3)(2))((1))
((4)(1))((1))
((31)(1))((1))
((3))((2))((1))
(End)
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
srcplptns[n_]:=Join@@Table[Select[Tuples[IntegerPartitions/@ptn],And[And@@(GreaterEqual@@@Transpose[PadRight[#]]),And@@Greater@@@#,And@@(Greater@@@DeleteCases[Transpose[PadRight[#]],0,{2}])]&],{ptn,IntegerPartitions[n]}];
srcsolids[n_]:=Join@@Table[Select[Tuples[srcplptns/@y],And[And@@(GreaterEqual@@@Transpose[Join@@@(PadRight[#,{n,n}]&/@#)]),And@@(Greater@@@DeleteCases[Transpose[Join@@@(PadRight[#,{n,n}]&/@#)],0,{2}])]&],{y,IntegerPartitions[n]}]
Table[Length[srcsolids[n]],{n,10}] (* Gus Wiseman, Jan 23 2019 *)
A179855
Number of 8-dimensional partitions of n.
Original entry on oeis.org
1, 9, 45, 201, 819, 3231, 12321, 46209, 170370, 621316, 2240838, 8011584, 28395213, 99845553, 348333411, 1205925033, 4142850423
Offset: 1
- Andrews, George E., The Theory of Partitions, Cambridge University Press, 1984. Cambridge Books Online. Cambridge University Press.
A080207
Let F(x) = 1 + x + 4x^2 + 9x^3 + ... = g.f. for A002835 (solid partitions restricted to two planes) and write F(x) = 1/Product_{n>=1} (1-x^n)^a(n).
Original entry on oeis.org
0, 1, 3, 5, 7, 9, 10, 12, 16, 21, 29, 32, 22, -2, -39, -67, -48, 64, 277, 576, 848, 981, 771, 40, -1498, -4276, -8745, -15062, -21702
Offset: 0
Comments