cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 41 results. Next

A000390 Number of 5-dimensional partitions of n.

Original entry on oeis.org

1, 6, 21, 71, 216, 657, 1907, 5507, 15522, 43352, 119140, 323946, 869476, 2308071, 6056581, 15724170, 40393693, 102736274, 258790004, 645968054, 1598460229, 3923114261, 9554122089, 23098084695, 55458417125, 132293945737, 313657570114
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000012 (0-dim), A000041 (1-dim), A000219 (2-dim), A000293 (3-dim), A000334 (4-dim), A000416 (6-dim).
Cf. A096751 (See row 5).

Programs

  • Mathematica
    trans[x_] := If[x == {}, {}, Transpose[x]];
    levptns[n_, k_] :=
      If[k == 1, IntegerPartitions[n],
       Join @@ Table[
         Select[Tuples[levptns[#, k - 1] & /@ y],
          And @@ (GreaterEqual @@@
              trans[Flatten /@ (PadRight[#,
                    ConstantArray[n, k - 1]] & /@ #)]) &], {y,
          IntegerPartitions[n]}]];
    Table[levptns[n, 5] // Length, {n, 1, 7}] (* Robert P. P. McKone, Dec 18 2020 *)

Extensions

More terms from Sean A. Irvine, Nov 14 2010
More terms found by Suresh Govindarajan, May 30 2011

A096576 Number of solid partitions asymmetric under rotation operation.

Original entry on oeis.org

0, 1, 3, 8, 19, 46, 101, 226, 486, 1038, 2163, 4471, 9077, 18260, 36258
Offset: 1

Views

Author

Wouter Meeussen, Jun 27 2004

Keywords

Comments

Rotation has permutation cycle length 1 or 3. Uses function "solidformBTK" from link above.

Examples

			Solid partition [{{3, 1, 1, 1}, {3}}, {{2, 1}}, {{1}}, {{1}}, {{1}}] rotates into [{{4, 1}, {1, 1}, {1, 1}}, {{2}, {1}}, {{1}}, {{1}}, {{1}}] by rotating each layer as a plane partition.
		

Crossrefs

Programs

Formula

a(n) = (A000293(n) - A096575(n))/3.

A096578 Number of solid partitions with period (cycle length) two under 'time-lapse' operation.

Original entry on oeis.org

0, 0, 1, 1, 1, 2, 3, 6, 7, 11, 15, 25, 33, 48, 65
Offset: 1

Views

Author

Wouter Meeussen, Jun 27 2004

Keywords

Comments

Operation 'time lapse', or 'lapse', L, operates on a solid partition by creating a new one, layer by layer. Layer k is defined by its 3-dimensional-Ferrers plot, equal to the (existence of) elements of the solid partition with value >= k. As if taking a time-lapse picture of the solid partition, filtering out elements less than k and projecting the resulting structure (filled with ones) to the base plane. Given there are three plane to project into, together with the starting solid partition, that makezs four 'isomers'.

Examples

			Solid partition [{{3,1,1,1},{3}},{{2,1}},{{1}},{{1}},{{1}}] lapses (L) into
[{{4,1},{2},{1},{1},{1}},{{1,1},{1}},{{1,1}}], then into
[{{2,1,1,1,1},{2,1},{2}},{{1,1}},{{1}},{{1}}], further into
[{{5,2,1},{2},{1},{1}},{{1,1,1}}] and returns after L^4 to
[{{3,1,1,1},{3}},{{2,1}},{{1}},{{1}},{{1}}]
		

Crossrefs

Programs

  • Mathematica
    (* See link above. *)

A096581 Number of solid partitions non-symmetric under L^2 (L= 'time-lapse' symmetry operation) on solid partitions.

Original entry on oeis.org

0, 2, 4, 12, 28, 68, 150, 336, 724, 1550, 3234, 6688, 13590, 27354, 54334
Offset: 1

Views

Author

Wouter Meeussen, Jun 27 2004

Keywords

Examples

			Solid partition [{{3,1,1,1},{3}},{{2,1}},{{1}},{{1}},{{1}}] lapses (L) into
[{{4,1},{2},{1},{1},{1}},{{1,1},{1}},{{1,1}}], then into
[{{2,1,1,1,1},{2,1},{2}},{{1,1}},{{1}},{{1}}], further into
[{{5,2,1},{2},{1},{1}},{{1,1,1}}] and returns after L^4 to
[{{3,1,1,1},{3}},{{2,1}},{{1}},{{1}},{{1}}]
		

Crossrefs

Programs

  • Mathematica
    (* See link above. *)

Formula

By definition, A000293(n) = A096580(n) + 2*a(n).

A116672 Triangle read by rows in which the binomial transform of the n-th row gives the Euler transform of the n-th diagonal of Pascal's triangle (A007318).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 6, 11, 7, 1, 1, 10, 27, 29, 12, 1, 1, 14, 57, 96, 72, 21, 1, 1, 21, 117, 277, 319, 176, 38, 1
Offset: 1

Views

Author

Alford Arnold, Feb 22 2006

Keywords

Comments

For example, the Euler transform of 1,3,6,... is 1,1,4,10,26,59,141,... (A000294) differing slightly from A000293 which counts the solid partitions.
The NAME does not reproduce the DATA, COMMENTS, or EXAMPLES. - R. J. Mathar, Jul 19 2017
The binomial transforms of the rows form the rows of A289656. - N. J. A. Sloane, Jul 19 2017

Examples

			Row 6 is 1 10 27 29 12 1 generating 1 11 48 141 ... (A008780) the seventh term in the Euler transforms of 1,1,1,...; 1,2,3,...; 1,3,6,... 1,4,10,... etc.
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 4, 4, 1;
1, 6, 11, 7, 1;
1, 10, 27, 29, 12, 1;
1, 14, 57, 96, 72, 21, 1;
1, 21, 117, 277, 319, 176, 38, 1;
...
		

Crossrefs

Cf. A000293, A116673 (row sums), A008778 - A008780, A289656.

A002835 Solid partitions of n which are restricted to two planes.

Original entry on oeis.org

1, 1, 4, 9, 22, 46, 102, 206, 427, 841, 1658, 3173, 6038, 11251, 20807, 37907, 68493, 122338, 216819, 380637, 663417, 1147033, 1969961, 3359677, 5694592, 9592063, 16065593, 26756430, 44328414
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A000293 for unrestricted solid partitions.

Extensions

More terms from Pab Ter (pabrlos(AT)yahoo.com), May 08 2004

A323657 Number of strict solid partitions of n.

Original entry on oeis.org

1, 1, 1, 4, 4, 7, 16, 19, 28, 40, 82, 94, 145, 190, 274, 463, 580, 802, 1096, 1486, 1948, 3148, 3811, 5314, 6922, 9394, 11971, 16156, 23044, 28966, 38368, 50002, 65116, 83872, 108706, 137917, 192070, 236242, 308698, 390772, 506935, 633982, 817324, 1018090
Offset: 0

Views

Author

Gus Wiseman, Jan 22 2019

Keywords

Comments

A strict solid partition is an infinite three-dimensional array of distinct positive integers (and any number of zeros) summing to n such that all one-dimensional sections are strictly decreasing until they become all zeros.

Examples

			The a(1) = 1 through a(6) = 16 strict solid partitions, represented as chains of chains of integer partitions:
  ((1))  ((2))  ((3))       ((4))       ((5))       ((6))
                ((21))      ((31))      ((32))      ((42))
                ((2)(1))    ((3)(1))    ((41))      ((51))
                ((2))((1))  ((3))((1))  ((3)(2))    ((321))
                                        ((4)(1))    ((4)(2))
                                        ((3))((2))  ((5)(1))
                                        ((4))((1))  ((31)(2))
                                                    ((32)(1))
                                                    ((4))((2))
                                                    ((5))((1))
                                                    ((31))((2))
                                                    ((3)(2)(1))
                                                    ((32))((1))
                                                    ((3)(1))((2))
                                                    ((3)(2))((1))
                                                    ((3))((2))((1))
		

Crossrefs

Cf. A000219, A000293 (solid partitions), A000334, A001970, A002974, A008289, A114736, A117433 (strict plane partitions), A207542, A321662, A323657.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    ptnplane[n_]:=Union[Map[Reverse@*primeMS,Join@@Permutations/@facs[n],{2}]];
    strplptns[n_]:=Join@@Table[Select[ptnplane[Times@@Prime/@y],And[And@@GreaterEqual@@@#,And@@(GreaterEqual@@@Transpose[PadRight[#]])]&],{y,Select[IntegerPartitions[n],UnsameQ@@#&]}]
    Table[Length[Join@@Table[Select[Tuples[strplptns/@y],And[UnsameQ@@Flatten[#],And@@(GreaterEqual@@@Transpose[Join@@@(PadRight[#,{n,n}]&/@#)])]&],{y,IntegerPartitions[n]}]],{n,10}]

Formula

a(n) = Sum_{k=1..n} A008289(n,k)*A207542(k) for n > 0. - John Tyler Rascoe, Dec 19 2024

Extensions

a(21) onwards from John Tyler Rascoe, Dec 19 2024

A002974 Number of restricted solid partitions of n.

Original entry on oeis.org

1, 1, 4, 7, 11, 20, 35, 59, 99, 165, 270, 443, 723, 1161, 1861, 2961, 4654, 7279, 11317, 17476, 26879, 41132, 62601, 94878, 143172, 215115, 321995, 480216, 713655, 1057192
Offset: 1

Views

Author

Keywords

Comments

Definition, based on Math. Review MR0297583: By a solid partition of n is meant a 3-dimensional arrangement of positive integers N(x,y,z) satisfying the conditions (i) the integer N(x,y,z) is located at the point with Cartesian coordinates (x,y,z); N(x,y,z) is defined only for certain integers x,y,z >= 0, and (ii) if N(x,y,z) is defined and 0 <= x' <= x, 0 <= y' <= y, 0 <= z' <= z then N(x,y,z) is defined and N(x',y',z') <= N(x,y,z). A solid partition is said to correspond to an (ordinary) partition of n=n_1+n_2+...+n_t, n_k>0, if there is a one-to-one correspondence between the summands n_k and the points (x_k,y_k,z_k) for which N is defined so that n_k=N(x_k,y_k,z_k). Finally, a restricted solid partition is a solid partition such that x'<=x, y'<=y, z'<=z and N(x',y',z')=N(x,y,z) implies x'=x, y'=y, z'=z.
Alternatively, a restricted solid partition is an infinite three-dimensional array of nonnegative integers summing to n such that all one-dimensional sections are strictly decreasing until they become all zeros. - Gus Wiseman, Jan 22 2019

Examples

			From _Gus Wiseman_, Jan 22 2019: (Start)
The a(1) = 1 through a(6) = 20 restricted solid partitions, represented as chains of chains of integer partitions:
  ((1))  ((2))  ((3))       ((4))          ((5))           ((6))
                ((21))      ((31))         ((32))          ((42))
                ((2)(1))    ((3)(1))       ((41))          ((51))
                ((2))((1))  ((21)(1))      ((3)(2))        ((321))
                            ((3))((1))     ((4)(1))        ((4)(2))
                            ((21))((1))    ((31)(1))       ((5)(1))
                            ((2)(1))((1))  ((3))((2))      ((31)(2))
                                           ((4))((1))      ((32)(1))
                                           ((31))((1))     ((41)(1))
                                           ((3)(1))((1))   ((4))((2))
                                           ((21)(1))((1))  ((5))((1))
                                                           ((31))((2))
                                                           ((3)(2)(1))
                                                           ((32))((1))
                                                           ((41))((1))
                                                           ((3)(1))((2))
                                                           ((3)(2))((1))
                                                           ((4)(1))((1))
                                                           ((31)(1))((1))
                                                           ((3))((2))((1))
(End)
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000219, A000293 (solid partitions), A000334, A001970, A114736 (restricted plane partitions), A117433 (strict plane partitions), A321662, A323657 (strict solid partitions).

Programs

  • Mathematica
    srcplptns[n_]:=Join@@Table[Select[Tuples[IntegerPartitions/@ptn],And[And@@(GreaterEqual@@@Transpose[PadRight[#]]),And@@Greater@@@#,And@@(Greater@@@DeleteCases[Transpose[PadRight[#]],0,{2}])]&],{ptn,IntegerPartitions[n]}];
    srcsolids[n_]:=Join@@Table[Select[Tuples[srcplptns/@y],And[And@@(GreaterEqual@@@Transpose[Join@@@(PadRight[#,{n,n}]&/@#)]),And@@(Greater@@@DeleteCases[Transpose[Join@@@(PadRight[#,{n,n}]&/@#)],0,{2}])]&],{y,IntegerPartitions[n]}]
    Table[Length[srcsolids[n]],{n,10}] (* Gus Wiseman, Jan 23 2019 *)

Extensions

More terms from Sean A. Irvine, Dec 15 2014

A179855 Number of 8-dimensional partitions of n.

Original entry on oeis.org

1, 9, 45, 201, 819, 3231, 12321, 46209, 170370, 621316, 2240838, 8011584, 28395213, 99845553, 348333411, 1205925033, 4142850423
Offset: 1

Views

Author

Suresh Govindarajan, Jan 11 2011

Keywords

Crossrefs

A080207 Let F(x) = 1 + x + 4x^2 + 9x^3 + ... = g.f. for A002835 (solid partitions restricted to two planes) and write F(x) = 1/Product_{n>=1} (1-x^n)^a(n).

Original entry on oeis.org

0, 1, 3, 5, 7, 9, 10, 12, 16, 21, 29, 32, 22, -2, -39, -67, -48, 64, 277, 576, 848, 981, 771, 40, -1498, -4276, -8745, -15062, -21702
Offset: 0

Views

Author

N. J. A. Sloane, May 02 2003

Keywords

Crossrefs

Previous Showing 21-30 of 41 results. Next