A337552
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * (3*k-2) * a(n-k).
Original entry on oeis.org
1, 1, 6, 37, 330, 3613, 47652, 732625, 12875118, 254540413, 5591435136, 135108218353, 3561467337546, 101704047315037, 3127751183515020, 103059820083026449, 3622223857996975110, 135266462416766669917, 5348457650664454581240, 223227700948792985989777
Offset: 0
-
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] (3 k - 2) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 19}]
nmax = 19; CoefficientList[Series[1/(Exp[x] (2 - 3 x) - 1), {x, 0, nmax}], x] Range[0, nmax]!
-
seq(n)={Vec(serlaplace(1 / (exp(x + O(x*x^n)) * (2 - 3*x) - 1)))} \\ Andrew Howroyd, Aug 31 2020
A337553
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * (4*k-3) * a(n-k).
Original entry on oeis.org
1, 1, 7, 45, 439, 5157, 73455, 1217101, 23066311, 491680437, 11645898655, 303422639517, 8624098330359, 265546702327813, 8805478883825359, 312844282877905389, 11855836533424581415, 477380986427269453653, 20352680600044759742463, 915923521948522369041469
Offset: 0
-
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] (4 k - 3) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 19}]
nmax = 19; CoefficientList[Series[1/(Exp[x] (3 - 4 x) - 2), {x, 0, nmax}], x] Range[0, nmax]!
-
seq(n)={Vec(serlaplace(1 / (exp(x + O(x*x^n)) * (3 - 4*x) - 2)))} \\ Andrew Howroyd, Aug 31 2020
A337554
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * (5*k-4) * a(n-k).
Original entry on oeis.org
1, 1, 8, 53, 560, 6961, 105898, 1867393, 37713620, 856269401, 21606253238, 599664843433, 18156702186880, 595557844417441, 21037627605306578, 796218790808110673, 32143778726932363340, 1378765268603813275081, 62619174356163136219918, 3001963660666272082265113
Offset: 0
-
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] (5 k - 4) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 19}]
nmax = 19; CoefficientList[Series[1/(Exp[x] (4 - 5 x) - 3), {x, 0, nmax}], x] Range[0, nmax]!
-
seq(n)={Vec(serlaplace(1 / (exp(x + O(x*x^n)) * (4 - 5*x) - 3)))} \\ Andrew Howroyd, Aug 31 2020
A090628
Square array T(n,k) (row n, column k) read by antidiagonals defined by: T(n,k) is the permanent of the n X n matrix with 1 on the diagonal and k elsewhere; T(0,k)=1.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 5, 6, 1, 1, 1, 10, 29, 24, 1, 1, 1, 17, 82, 233, 120, 1, 1, 1, 26, 177, 1000, 2329, 720, 1, 1, 1, 37, 326, 2913, 14968, 27949, 5040, 1, 1, 1, 50, 541, 6776, 58017, 269488, 391285, 40320, 1, 1, 1, 65, 834, 13609, 168376, 1393137, 5659120, 6260561, 362880, 1
Offset: 0
Row n=0: 1, 1, 1, 1, 1, 1, 1, 1, ...
Row n=1: 1, 1, 1, 1, 1, 1, 1, 1, ...
Row n=2: 1, 2, 5, 10, 17, 26, 37, 50, ...
Row n=3: 1, 6, 29, 82, 177, 326, 541, 834, ...
Row n=4: 1, 24, 233, 1000, 2913, 6776, 13609, 24648, ...
-
T:= (n, k)-> `if`(n=0, 1, LinearAlgebra[Permanent](
Matrix(n, (i, j)-> `if`(i=j, 1, k)))):
seq(seq(T(n, d-n), n=0..d), d=0..10); # Alois P. Heinz, Jul 09 2017
# second Maple program:
b:= proc(n, k) b(n, k):= `if`(k=0, `if`(n<2, 1-n, (n-1)*
(b(n-1, 0)+b(n-2, 0))), binomial(n, k)*b(n-k, 0))
end:
T:= proc(n, k) T(n, k):= add(b(n, j)*k^(n-j), j=0..n) end:
seq(seq(T(n, d-n), n=0..d), d=0..10); # Alois P. Heinz, Jul 09 2017
-
T[0, _] = 1;
T[n_, k_] := Permanent[Table[If[i == j, 1, k], {i, n}, {j, n}]];
Table[T[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 07 2019 *)
-
T(n,k) = matpermanent(matrix(n, n, i, j, if (i==j, 1, k)));
matrix(10, 10, n, k, T(n,k)) \\ Michel Marcus, Dec 07 2019
A097821
Expansion of e.g.f. exp(2x)/(1-5x).
Original entry on oeis.org
1, 7, 74, 1118, 22376, 559432, 16783024, 587405968, 23496238976, 1057330754432, 52866537722624, 2907659574746368, 174459574484786176, 11339872341511109632, 793791063905777690624, 59534329792933326829568
Offset: 0
-
f:= proc(n) option remember; 5*n*procname(n-1)+2^n end proc:
f(0):= 1:
map(f, [$0..50]); # Robert Israel, Nov 10 2022
-
my(x='x + O('x^25)); Vec(serlaplace(exp(2*x)/(1-5*x))) \\ Michel Marcus, Nov 08 2022
A334578
Double subfactorials: a(n) = (-1)^floor(n/2) * n!! * Sum_{i=0..floor(n/2)} (-1)^i/(n-2*i)!!.
Original entry on oeis.org
1, 1, 1, 2, 5, 11, 29, 76, 233, 685, 2329, 7534, 27949, 97943, 391285, 1469144, 6260561, 24975449, 112690097, 474533530, 2253801941, 9965204131, 49583642701, 229199695012, 1190007424825, 5729992375301, 30940193045449, 154709794133126, 866325405272573
Offset: 0
a(5) = (5*3*1)*(1/(1) - 1/(3*1) + 1/(5*3*1)) = 15-5+1 = 11.
-
a:= proc(n) option remember; `if`(n<2, [0$2, 1$2][n+3],
(n-1)*a(n-2)+(n-2)*a(n-4))
end:
seq(a(n), n=0..32); # Alois P. Heinz, May 06 2020
-
RecurrenceTable[{a[0] == 1, a[1] == 1, a[n] == n a[n-2] + (-1)^Floor[n/2]}, a, {n, 0, 32}] (* Jean-François Alcover, Nov 27 2020 *)
A342381
Triangle read by rows: T(n,k) is the number of symmetries of the n-dimensional hypercube that fix exactly 2*k facets; n,k >= 0.
Original entry on oeis.org
1, 1, 1, 5, 2, 1, 29, 15, 3, 1, 233, 116, 30, 4, 1, 2329, 1165, 290, 50, 5, 1, 27949, 13974, 3495, 580, 75, 6, 1, 391285, 195643, 48909, 8155, 1015, 105, 7, 1, 6260561, 3130280, 782572, 130424, 16310, 1624, 140, 8, 1, 112690097, 56345049, 14086260, 2347716, 293454, 29358, 2436, 180, 9, 1
Offset: 0
Table begins:
n\k | 0 1 2 3 4 5 6 7 8 9
----+--------------------------------------------------------------
0 | 1
1 | 1 1
2 | 5 2 1
3 | 29 15 3 1
4 | 233 116 30 4 1
5 | 2329 1165 290 50 5 1
6 | 27949 13974 3495 580 75 6 1
7 | 391285 195643 48909 8155 1015 105 7 1
8 | 6260561 3130280 782572 130424 16310 1624 140 8 1
9 | 112690097 56345049 14086260 2347716 293454 29358 2436 180 9 1
For the cube in n=2 dimensions (the square) there is
T(2,2) = 1 symmetry that fixes all 2*2 = 4 sides, namely the identity:
2
+---+
3| |1;
+---+
4
T(2,1) = 2 symmetries that fix 2*1 = 2 sides, namely horizonal/vertical flips:
4 2
+---+ +---+
3| |1 and 1| |3;
+---+ +---+
2 4
and T(2,0) = 5 symmetries that fix 2*0 = 0 sides, namely rotations or diagonal flips:
1 4 3 3 1
+---+ +---+ +---+ +---+ +---+
2| |4, 1| |3, 4| |2, 2| |4, and 4| |2.
+---+ +---+ +---+ +---+ +---+
3 2 1 1 3
-
f(n) = sum(k=0, n, (-1)^(n+k)*binomial(n, k)*k!*2^k); \\ A000354
T(n, k) = f(n-k)*binomial(n, k); \\ Michel Marcus, Mar 10 2021
A343582
a(n) = (-1)^n*n!*[x^n] exp(-3*x)/(1 - 2*x).
Original entry on oeis.org
1, 1, 5, -3, 105, -807, 10413, -143595, 2304081, -41453775, 829134549, -18240782931, 437779321785, -11382260772087, 318703306401405, -9561099177693243, 305955173729230497, -10402475906664696735, 374489132640316502949, -14230587040330864850595, 569223481613238080808201
Offset: 0
-
egf := exp(-3*x)/(1 - 2*x): ser := series(egf, x, 32):
seq((-1)^n*n!*coeff(ser, x, n), n=0..20);
-
a[n_] := (-2)^n Sum[Binomial[n, k] Subfactorial[n - k] (-2)^(-k), {k, 0, n}];
Table[a[n], {n, 0, 20}]
-
def A343582():
a, b, n = 1, 5, 3
yield 1
yield a
while True:
yield b
a, b = b, 6*(n - 1)*a - (2*n - 3)*b
n += 1
a = A343582(); print([next(a) for _ in range(21)])
A372723
Triangle read by rows: Column k has e.g.f. t^k / ((1 - t)^(k + 1) * exp(t)).
Original entry on oeis.org
1, 0, 1, 1, 2, 2, 2, 9, 12, 6, 9, 44, 84, 72, 24, 44, 265, 640, 780, 480, 120, 265, 1854, 5430, 8520, 7560, 3600, 720, 1854, 14833, 50988, 97650, 112560, 78120, 30240, 5040, 14833, 133496, 526568, 1189104, 1681680, 1525440, 866880, 282240, 40320
Offset: 0
Triangle starts:
[0] 1;
[1] 0, 1;
[2] 1, 2, 2;
[3] 2, 9, 12, 6;
[4] 9, 44, 84, 72, 24;
[5] 44, 265, 640, 780, 480, 120;
[6] 265, 1854, 5430, 8520, 7560, 3600, 720;
[7] 1854, 14833, 50988, 97650, 112560, 78120, 30240, 5040;
[8] 14833, 133496, 526568, 1189104, 1681680, 1525440, 866880, 282240, 40320;
-
MAX := 14; gf := k -> t^k / ((1 - t)^(k + 1) * exp(t)):
ser := k -> series(gf(k), t, MAX):
col := k -> local n; seq(n!*coeff(series(ser(k), t, MAX-1), t, n), n = 0..MAX-2):
T := (n, k) -> col(k)[n+1]:
seq(lprint(seq(T(n, k), k = 0..n)), n = 0..8);
A064670
Triangle T(n,k) (1 <= k <= n) where the first column (T(n,1)) is the sequence of secant numbers A000364.
Original entry on oeis.org
1, 1, 4, 5, 20, 36, 61, 244, 504, 576, 1385, 5540, 11916, 17280, 14400, 50521, 202084, 442224, 697536, 792000, 518400, 2702765, 10811060, 23870196, 39202560, 50198400, 47174400, 25401600, 199360981, 797443924, 1769923944
Offset: 1
Jose L. Arregui (arregui(AT)posta.unizar.es), Oct 09 2001
T(4,3) = 9*(T(3,2) + T(3,3)) = 9*(20+36) = 504.
-
T[1, 1] = 1; T[n_, k_] /; 1 <= k <= n := T[n, k] = k^2*Sum[T[n-1, j], {j, k-1, n-1}]; T[, ] = 0; Table[T[n, k], {n, 1, 8}, {k, 1, n}] // Flatten (* Jean-François Alcover, Oct 25 2016 *)
Comments