cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 31 results. Next

A337552 a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * (3*k-2) * a(n-k).

Original entry on oeis.org

1, 1, 6, 37, 330, 3613, 47652, 732625, 12875118, 254540413, 5591435136, 135108218353, 3561467337546, 101704047315037, 3127751183515020, 103059820083026449, 3622223857996975110, 135266462416766669917, 5348457650664454581240, 223227700948792985989777
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 31 2020

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] (3 k - 2) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 19}]
    nmax = 19; CoefficientList[Series[1/(Exp[x] (2 - 3 x) - 1), {x, 0, nmax}], x] Range[0, nmax]!
  • PARI
    seq(n)={Vec(serlaplace(1 / (exp(x + O(x*x^n)) * (2 - 3*x) - 1)))} \\ Andrew Howroyd, Aug 31 2020

Formula

E.g.f.: 1 / (exp(x) * (2 - 3*x) - 1).
a(n) ~ n! * c / ((1-c) * (2/3 - c)^(n+1)), where c = -LambertW(-exp(-2/3)/3). - Vaclav Kotesovec, Aug 31 2020

A337553 a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * (4*k-3) * a(n-k).

Original entry on oeis.org

1, 1, 7, 45, 439, 5157, 73455, 1217101, 23066311, 491680437, 11645898655, 303422639517, 8624098330359, 265546702327813, 8805478883825359, 312844282877905389, 11855836533424581415, 477380986427269453653, 20352680600044759742463, 915923521948522369041469
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 31 2020

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] (4 k - 3) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 19}]
    nmax = 19; CoefficientList[Series[1/(Exp[x] (3 - 4 x) - 2), {x, 0, nmax}], x] Range[0, nmax]!
  • PARI
    seq(n)={Vec(serlaplace(1 / (exp(x + O(x*x^n)) * (3 - 4*x) - 2)))} \\ Andrew Howroyd, Aug 31 2020

Formula

E.g.f.: 1 / (exp(x) * (3 - 4*x) - 2).
a(n) ~ n! * c * 2^(2*n+1) / ((1-c) * (3 - 4*c)^(n+1)), where c = -LambertW(-exp(-3/4)/2). - Vaclav Kotesovec, Aug 31 2020

A337554 a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * (5*k-4) * a(n-k).

Original entry on oeis.org

1, 1, 8, 53, 560, 6961, 105898, 1867393, 37713620, 856269401, 21606253238, 599664843433, 18156702186880, 595557844417441, 21037627605306578, 796218790808110673, 32143778726932363340, 1378765268603813275081, 62619174356163136219918, 3001963660666272082265113
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 31 2020

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] (5 k - 4) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 19}]
    nmax = 19; CoefficientList[Series[1/(Exp[x] (4 - 5 x) - 3), {x, 0, nmax}], x] Range[0, nmax]!
  • PARI
    seq(n)={Vec(serlaplace(1 / (exp(x + O(x*x^n)) * (4 - 5*x) - 3)))} \\ Andrew Howroyd, Aug 31 2020

Formula

E.g.f.: 1 / (exp(x) * (4 - 5*x) - 3).
a(n) ~ n! * c / (3*(1-c) * (4/5 - c)^(n+1)), where c = -LambertW(-3*exp(-4/5)/5). - Vaclav Kotesovec, Aug 31 2020

A090628 Square array T(n,k) (row n, column k) read by antidiagonals defined by: T(n,k) is the permanent of the n X n matrix with 1 on the diagonal and k elsewhere; T(0,k)=1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 5, 6, 1, 1, 1, 10, 29, 24, 1, 1, 1, 17, 82, 233, 120, 1, 1, 1, 26, 177, 1000, 2329, 720, 1, 1, 1, 37, 326, 2913, 14968, 27949, 5040, 1, 1, 1, 50, 541, 6776, 58017, 269488, 391285, 40320, 1, 1, 1, 65, 834, 13609, 168376, 1393137, 5659120, 6260561, 362880, 1
Offset: 0

Views

Author

Philippe Deléham, Dec 13 2003

Keywords

Examples

			Row n=0: 1,  1,   1,    1,    1,    1,     1,     1, ...
Row n=1: 1,  1,   1,    1,    1,    1,     1,     1, ...
Row n=2: 1,  2,   5,   10,   17,   26,    37,    50, ...
Row n=3: 1,  6,  29,   82,  177,  326,   541,   834, ...
Row n=4: 1, 24, 233, 1000, 2913, 6776, 13609, 24648, ...
		

Crossrefs

Cf. A008290.
Columns: A000012, A000142, A000354.

Programs

  • Maple
    T:= (n, k)-> `if`(n=0, 1, LinearAlgebra[Permanent](
                  Matrix(n, (i, j)-> `if`(i=j, 1, k)))):
    seq(seq(T(n, d-n), n=0..d), d=0..10);  # Alois P. Heinz, Jul 09 2017
    # second Maple program:
    b:= proc(n, k) b(n, k):= `if`(k=0, `if`(n<2, 1-n, (n-1)*
          (b(n-1, 0)+b(n-2, 0))), binomial(n, k)*b(n-k, 0))
        end:
    T:= proc(n, k) T(n, k):= add(b(n, j)*k^(n-j), j=0..n) end:
    seq(seq(T(n, d-n), n=0..d), d=0..10);  # Alois P. Heinz, Jul 09 2017
  • Mathematica
    T[0, _] = 1;
    T[n_, k_] := Permanent[Table[If[i == j, 1, k], {i, n}, {j, n}]];
    Table[T[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 07 2019 *)
  • PARI
    T(n,k) = matpermanent(matrix(n, n, i, j, if (i==j, 1, k)));
    matrix(10, 10, n, k, T(n,k)) \\ Michel Marcus, Dec 07 2019

Formula

T(n, k) = Sum_{j=0..n} A008290(n, j)*k^(n-j).

Extensions

3 terms corrected and more terms from Alois P. Heinz, Jul 09 2017

A097821 Expansion of e.g.f. exp(2x)/(1-5x).

Original entry on oeis.org

1, 7, 74, 1118, 22376, 559432, 16783024, 587405968, 23496238976, 1057330754432, 52866537722624, 2907659574746368, 174459574484786176, 11339872341511109632, 793791063905777690624, 59534329792933326829568
Offset: 0

Views

Author

Paul Barry, Aug 26 2004

Keywords

Comments

Second binomial transform of n!*5^n.

Crossrefs

Programs

  • Maple
    f:= proc(n) option remember; 5*n*procname(n-1)+2^n end proc:
    f(0):= 1:
    map(f, [$0..50]); # Robert Israel, Nov 10 2022
  • PARI
    my(x='x + O('x^25)); Vec(serlaplace(exp(2*x)/(1-5*x))) \\ Michel Marcus, Nov 08 2022

Formula

a(n) = 5*n*a(n-1) + 2^n, n > 0, a(0)=1.
D-finite with recurrence a(n) +(-5*n-2)*a(n-1) +10*(n-1)*a(n-2)=0. - R. J. Mathar, Aug 20 2021
a(n) = 5^n * n! * Sum_{k = 0..n} (2/5)^k/k! = 5^n * exp(2/5) * gamma(n + 1, 2/5). - Gerry Martens, Nov 07 2022

A334578 Double subfactorials: a(n) = (-1)^floor(n/2) * n!! * Sum_{i=0..floor(n/2)} (-1)^i/(n-2*i)!!.

Original entry on oeis.org

1, 1, 1, 2, 5, 11, 29, 76, 233, 685, 2329, 7534, 27949, 97943, 391285, 1469144, 6260561, 24975449, 112690097, 474533530, 2253801941, 9965204131, 49583642701, 229199695012, 1190007424825, 5729992375301, 30940193045449, 154709794133126, 866325405272573
Offset: 0

Views

Author

Ryan Brooks, May 06 2020

Keywords

Examples

			a(5) = (5*3*1)*(1/(1) - 1/(3*1) + 1/(5*3*1)) = 15-5+1 = 11.
		

Crossrefs

Even bisection gives A000354.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, [0$2, 1$2][n+3],
          (n-1)*a(n-2)+(n-2)*a(n-4))
        end:
    seq(a(n), n=0..32);  # Alois P. Heinz, May 06 2020
  • Mathematica
    RecurrenceTable[{a[0] == 1, a[1] == 1, a[n] == n a[n-2] + (-1)^Floor[n/2]}, a, {n, 0, 32}] (* Jean-François Alcover, Nov 27 2020 *)

Formula

a(n) = n*a(n-2) + (-1)^floor(n/2).
a(2n) = A000354(n).
From Ryan Brooks, Oct 25 2020: (Start)
a(2n)/A006882(2n) ~ 1/sqrt(e) = A092605.
a(2n+1)/A006882(2n+1) ~ sqrt(Pi/(2*e))*erfi(1/sqrt(2)) = A306858. (End)

A342381 Triangle read by rows: T(n,k) is the number of symmetries of the n-dimensional hypercube that fix exactly 2*k facets; n,k >= 0.

Original entry on oeis.org

1, 1, 1, 5, 2, 1, 29, 15, 3, 1, 233, 116, 30, 4, 1, 2329, 1165, 290, 50, 5, 1, 27949, 13974, 3495, 580, 75, 6, 1, 391285, 195643, 48909, 8155, 1015, 105, 7, 1, 6260561, 3130280, 782572, 130424, 16310, 1624, 140, 8, 1, 112690097, 56345049, 14086260, 2347716, 293454, 29358, 2436, 180, 9, 1
Offset: 0

Views

Author

Peter Kagey, Mar 09 2021

Keywords

Comments

Equivalently the number of symmetries of the n-dimensional cross-polytope that fix exactly 2*k vertices.
If a facet of the hypercube is fixed, then the opposite facet must also be fixed.

Examples

			Table begins:
n\k |         0        1        2       3      4     5    6   7 8 9
----+--------------------------------------------------------------
  0 |         1
  1 |         1        1
  2 |         5        2        1
  3 |        29       15        3       1
  4 |       233      116       30       4      1
  5 |      2329     1165      290      50      5     1
  6 |     27949    13974     3495     580     75     6    1
  7 |    391285   195643    48909    8155   1015   105    7   1
  8 |   6260561  3130280   782572  130424  16310  1624  140   8 1
  9 | 112690097 56345049 14086260 2347716 293454 29358 2436 180 9 1
For the cube in n=2 dimensions (the square) there is
T(2,2) = 1 symmetry that fixes all 2*2 = 4 sides, namely the identity:
     2
   +---+
  3|   |1;
   +---+
     4
T(2,1) = 2 symmetries that fix 2*1 = 2 sides, namely horizonal/vertical flips:
     4           2
   +---+       +---+
  3|   |1 and 1|   |3;
   +---+       +---+
     2           4
and T(2,0) = 5 symmetries that fix 2*0 = 0 sides, namely rotations or diagonal flips:
     1         4         3         3            1
   +---+     +---+     +---+     +---+        +---+
  2|   |4,  1|   |3,  4|   |2,  2|   |4, and 4|   |2.
   +---+     +---+     +---+     +---+        +---+
     3         2         1         1            3
		

Crossrefs

Columns and diagonals: A000354 (k=0), A161937 (k=1), A028895 (n=k+2).
Row sums are A000165.

Programs

  • PARI
    f(n) = sum(k=0, n, (-1)^(n+k)*binomial(n, k)*k!*2^k); \\ A000354
    T(n, k) = f(n-k)*binomial(n, k); \\ Michel Marcus, Mar 10 2021

Formula

T(n,k) = A114320(2n,k)/A001147(n).
T(n,k) = A000354(n-k)*binomial(n,k).

A343582 a(n) = (-1)^n*n!*[x^n] exp(-3*x)/(1 - 2*x).

Original entry on oeis.org

1, 1, 5, -3, 105, -807, 10413, -143595, 2304081, -41453775, 829134549, -18240782931, 437779321785, -11382260772087, 318703306401405, -9561099177693243, 305955173729230497, -10402475906664696735, 374489132640316502949, -14230587040330864850595, 569223481613238080808201
Offset: 0

Views

Author

Peter Luschny, Apr 24 2021

Keywords

Comments

The row polynomials of the rencontres numbers (A008290) evaluated at -1/2 and normalized by (-2)^n.

Crossrefs

Programs

  • Maple
    egf := exp(-3*x)/(1 - 2*x): ser := series(egf, x, 32):
    seq((-1)^n*n!*coeff(ser, x, n), n=0..20);
  • Mathematica
    a[n_] := (-2)^n Sum[Binomial[n, k] Subfactorial[n - k] (-2)^(-k), {k, 0, n}];
    Table[a[n], {n, 0, 20}]
  • Python
    def A343582():
        a, b, n = 1, 5, 3
        yield 1
        yield a
        while True:
            yield b
            a, b = b, 6*(n - 1)*a - (2*n - 3)*b
            n += 1
    a = A343582(); print([next(a) for _ in range(21)])

Formula

a(n) = (-2)^n*Sum_{k=0..n} binomial(n, k)*subfactorial(n - k)*(-1/2)^k.
a(n) = 6*(n - 1)*a(n - 2) - (2*n - 3)*a(n - 1) for n >= 3.

A372723 Triangle read by rows: Column k has e.g.f. t^k / ((1 - t)^(k + 1) * exp(t)).

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 2, 9, 12, 6, 9, 44, 84, 72, 24, 44, 265, 640, 780, 480, 120, 265, 1854, 5430, 8520, 7560, 3600, 720, 1854, 14833, 50988, 97650, 112560, 78120, 30240, 5040, 14833, 133496, 526568, 1189104, 1681680, 1525440, 866880, 282240, 40320
Offset: 0

Views

Author

Peter Luschny, May 21 2024

Keywords

Examples

			Triangle starts:
[0]     1;
[1]     0,      1;
[2]     1,      2,      2;
[3]     2,      9,     12,       6;
[4]     9,     44,     84,      72,      24;
[5]    44,    265,    640,     780,     480,     120;
[6]   265,   1854,   5430,    8520,    7560,    3600,    720;
[7]  1854,  14833,  50988,   97650,  112560,   78120,  30240,   5040;
[8] 14833, 133496, 526568, 1189104, 1681680, 1525440, 866880, 282240, 40320;
		

Crossrefs

Cf. A000166 (column 0), A000142 (main diagonal), A062119 (subdiagonal), A000354 (row sums), A033999 (alternating row sums), A372716 (central terms).

Programs

  • Maple
    MAX := 14; gf := k -> t^k / ((1 - t)^(k + 1) * exp(t)):
    ser := k -> series(gf(k), t, MAX):
    col := k -> local n; seq(n!*coeff(series(ser(k), t, MAX-1), t, n), n = 0..MAX-2):
    T := (n, k) -> col(k)[n+1]:
    seq(lprint(seq(T(n, k), k = 0..n)), n = 0..8);

A064670 Triangle T(n,k) (1 <= k <= n) where the first column (T(n,1)) is the sequence of secant numbers A000364.

Original entry on oeis.org

1, 1, 4, 5, 20, 36, 61, 244, 504, 576, 1385, 5540, 11916, 17280, 14400, 50521, 202084, 442224, 697536, 792000, 518400, 2702765, 10811060, 23870196, 39202560, 50198400, 47174400, 25401600, 199360981, 797443924, 1769923944
Offset: 1

Views

Author

Jose L. Arregui (arregui(AT)posta.unizar.es), Oct 09 2001

Keywords

Comments

Replacing m*m by m*(m+1) in the formula, the first column gives the tangent numbers A000182.

Examples

			T(4,3) = 9*(T(3,2) + T(3,3)) = 9*(20+36) = 504.
		

Crossrefs

Programs

  • Mathematica
    T[1, 1] = 1; T[n_, k_] /; 1 <= k <= n := T[n, k] = k^2*Sum[T[n-1, j], {j, k-1, n-1}]; T[, ] = 0; Table[T[n, k], {n, 1, 8}, {k, 1, n}] // Flatten (* Jean-François Alcover, Oct 25 2016 *)

Formula

T(n+1, m) = m*m*Sum_{k = m-1..n} T(n, k) (T(n, 0) = 0).

Extensions

More terms from Philippe Deléham, Sep 22 2005
Previous Showing 21-30 of 31 results. Next