A004747 Triangle read by rows: the Bell transform of the triple factorial numbers A008544 without column 0.
1, 2, 1, 10, 6, 1, 80, 52, 12, 1, 880, 600, 160, 20, 1, 12320, 8680, 2520, 380, 30, 1, 209440, 151200, 46480, 7840, 770, 42, 1, 4188800, 3082240, 987840, 179760, 20160, 1400, 56, 1, 96342400, 71998080, 23826880, 4583040, 562800, 45360, 2352, 72, 1
Offset: 1
Examples
Triangle begins: 1; 2, 1; 10, 6, 1; 80, 52, 12, 1; 880, 600, 160, 20, 1; 12320, 8680, 2520, 380, 30, 1; 209440, 151200, 46480, 7840, 770, 42, 1; Tree combinatorics for T(3,2)=6: Consider first the unordered forest of m=2 plane trees with n=3 vertices, namely one vertex with out-degree r=0 (root) and two different trees with two vertices (one root with out-degree r=1 and a leaf with r=0). The 6 increasing labelings come then from the forest with rooted (x) trees x, o-x (1,(3,2)), (2,(3,1)) and (3,(2,1)) and similarly from the second forest x, x-o (1,(2,3)), (2,(1,3)) and (3,(1,2)).
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
- F. Bergeron, Ph. Flajolet and B. Salvy, Varieties of increasing trees, Lecture Notes in Computer Science vol. 581, ed. J.-C. Raoult, Springer 1992, pp. 24-48.
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, arXiv:quant-ph/0402027, 2004.
- Richell O. Celeste, Roberto B. Corcino, and Ken Joffaniel M. Gonzales. Two Approaches to Normal Order Coefficients, Journal of Integer Sequences, Vol. 20 (2017), Article 17.3.5.
- Tom Copeland, A Class of Differential Operators and the Stirling Numbers
- Milan Janjic, Some classes of numbers and derivatives, JIS 12 (2009) #09.8.3.
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
- Wolfdieter Lang, Combinatorial Interpretation of Generalized Stirling Numbers, J. Int. Seqs. Vol. 12 (2009) #09.3.3.
- Mathias Pétréolle and Alan D. Sokal, Lattice paths and branched continued fractions. II. Multivariate Lah polynomials and Lah symmetric functions, arXiv:1907.02645 [math.CO], 2019.
- Index entries for sequences related to Bessel functions or polynomials
Crossrefs
Programs
-
Magma
function T(n,k) // T = A004747 if k eq 0 then return 0; elif k eq n then return 1; else return (3*(n-1)-k)*T(n-1,k) + T(n-1,k-1); end if; end function; [T(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Oct 03 2023
-
Maple
T := (n, m) -> 3^n/m!*(1/3*m*GAMMA(n-1/3)*hypergeom([1-1/3*m, 2/3-1/3*m, 1/3-1/3*m], [2/3, 4/3-n], 1)/GAMMA(2/3)-1/6*m*(m-1)*GAMMA(n-2/3)*hypergeom( [1-1/3*m, 2/3-1/3*m, 4/3-1/3*m], [4/3, 5/3-n], 1)/Pi*3^(1/2)*GAMMA(2/3)): for n from 1 to 6 do seq(simplify(T(n,k)),k=1..n) od; # Karol A. Penson, Feb 06 2004 # The function BellMatrix is defined in A264428. # Adds (1,0,0,0, ..) as column 0. BellMatrix(n -> mul(3*k+2, k=(0..n-1)), 9); # Peter Luschny, Jan 29 2016
-
Mathematica
(* First program *) T[1,1]= 1; T[, 0]= 0; T[0, ]= 0; T[n_, m_]:= (3*(n-1)-m)*T[n-1, m]+T[n-1, m-1]; Flatten[Table[T[n, m], {n,12}, {m,n}] ][[1 ;; 45]] (* Jean-François Alcover, Jun 16 2011, after recurrence *) (* Second program *) f[n_, m_]:= m/n Sum[Binomial[k, n-m-k] 3^k (-1)^(n-m-k) Binomial[n+k-1, n-1], {k, 0, n-m}]; Table[n! f[n, m]/(m! 3^(n-m)), {n,12}, {m,n}]//Flatten (* Michael De Vlieger, Dec 23 2015 *) (* Third program *) rows = 12; T[n_, m_]:= BellY[n, m, Table[Product[3k+2, {k, 0, j-1}], {j, 0, rows}]]; Table[T[n, m], {n,rows}, {m,n}]//Flatten (* Jean-François Alcover, Jun 22 2018 *)
-
Sage
# uses [bell_transform from A264428] triplefactorial = lambda n: prod(3*k+2 for k in (0..n-1)) def A004747_row(n): trifact = [triplefactorial(k) for k in (0..n)] return bell_transform(n, trifact) [A004747_row(n) for n in (0..10)] # Peter Luschny, Dec 21 2015
Formula
T(n, m) = n!*A048966(n, m)/(m!*3^(n-m));
T(n+1, m) = (3*n-m)*T(n, m)+ T(n, m-1), for n >= m >= 1, with T(n, m) = 0, for n
E.g.f. of m-th column: ( 1 - (1-3*x)^(1/3) )^m/m!.
Sum_{k=1..n} T(n, k) = A015735(n).
For a formula expressed as special values of hypergeometric functions 3F2 see the Maple program below. - Karol A. Penson, Feb 06 2004
T(n,1) = A008544(n-1). - Peter Luschny, Dec 23 2015
Extensions
New name from Peter Luschny, Dec 21 2015
A011801 Triangle read by rows, the inverse Bell transform of n!*binomial(4,n) (without column 0).
1, 4, 1, 36, 12, 1, 504, 192, 24, 1, 9576, 3960, 600, 40, 1, 229824, 100656, 17160, 1440, 60, 1, 6664896, 3048192, 563976, 54600, 2940, 84, 1, 226606464, 107255232, 21095424, 2256576, 142800, 5376, 112, 1, 8837652096, 4302305280, 887785920, 102332160, 7254576, 325584, 9072, 144, 1
Offset: 1
Comments
Previous name was: Triangle of numbers related to triangle A049223; generalization of Stirling numbers of second kind A008277, Bessel triangle A001497.
T(n, m) = S2p(-4; n,m), a member of a sequence of triangles including S2p(-1; n,m) = A001497(n-1,m-1) (Bessel triangle) and ((-1)^(n-m))*S2p(1; n,m) = A008277(n,m) (Stirling 2nd kind). T(n, 1) = A008546(n-1).
For the definition of the Bell transform see A264428 and the link. - Peter Luschny, Jan 16 2016
Examples
Triangle starts: 1; 4, 1; 36, 12, 1; 504, 192, 24, 1; 9576, 3960, 600, 40, 1; 229824, 100656, 17160, 1440, 60, 1; 6664896, 3048192, 563976, 54600, 2940, 84, 1; 226606464, 107255232, 21095424, 2256576, 142800, 5376, 112, 1;
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, arXiv:quant-ph/0402027, 2004.
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
- Peter Luschny, The Bell transform
- Index entries for sequences related to Bessel functions or polynomials
Crossrefs
Programs
-
Magma
function T(n,k) // T = A011801 if k eq 0 then return 0; elif k eq n then return 1; else return (5*(n-1)-k)*T(n-1,k) + T(n-1,k-1); end if; end function; [T(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Oct 03 2023
-
Mathematica
(* First program *) T[n_, m_] /; n>=m>=1:= T[n, m]= (5*(n-1)-m)*T[n-1, m] + T[n-1, m-1]; T[n_, m_] /; n
Jean-François Alcover, Jun 20 2018 *) (* Second program *) rows = 10; b[n_, m_]:= BellY[n, m, Table[k! Binomial[4, k], {k, 0, rows}]]; T= Table[b[n, m], {n,rows}, {m,rows}]//Inverse//Abs; A011801= Table[T[[n, m]], {n,rows}, {m,n}]//Flatten (* Jean-François Alcover, Jun 22 2018 *) -
Sage
# uses[inverse_bell_matrix from A264428] # Adds 1,0,0,0, ... as column 0 at the left side of the triangle. inverse_bell_matrix(lambda n: factorial(n)*binomial(4, n), 8) # Peter Luschny, Jan 16 2016
Formula
Extensions
New name from Peter Luschny, Jan 16 2016
A013988 Triangle read by rows, the inverse Bell transform of n!*binomial(5,n) (without column 0).
1, 5, 1, 55, 15, 1, 935, 295, 30, 1, 21505, 7425, 925, 50, 1, 623645, 229405, 32400, 2225, 75, 1, 21827575, 8423415, 1298605, 103600, 4550, 105, 1, 894930575, 358764175, 59069010, 5235405, 271950, 8330, 140, 1, 42061737025, 17398082625, 3016869625, 289426830, 16929255, 621810, 14070, 180, 1
Offset: 1
Comments
Previous name was: Triangle of numbers related to triangle A049224; generalization of Stirling numbers of second kind A008277, Bessel triangle A001497.
T(n, m) = S2p(-5; n,m), a member of a sequence of triangles including S2p(-1; n,m) = A001497(n-1,m-1) (Bessel triangle) and ((-1)^(n-m))*S2p(1; n,m) = A008277(n,m) (Stirling 2nd kind). T(n, 1) = A008543(n-1).
For the definition of the Bell transform see A264428 and the link. - Peter Luschny, Jan 16 2016
Examples
Triangle begins as: 1; 5, 1; 55, 15, 1; 935, 295, 30, 1; 21505, 7425, 925, 50, 1; 623645, 229405, 32400, 2225, 75, 1; 21827575, 8423415, 1298605, 103600, 4550, 105, 1; 894930575, 358764175, 59069010, 5235405, 271950, 8330, 140, 1;
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, arXiv:quant-ph/0402027, 2004.
- Milan Janjic, Some classes of numbers and derivatives, JIS 12 (2009) 09.8.3
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
- Peter Luschny, The Bell transform
- Index entries for sequences related to Bessel functions or polynomials
Crossrefs
Programs
-
Magma
function T(n,k) // T = A013988 if k eq 0 then return 0; elif k eq n then return 1; else return (6*(n-1)-k)*T(n-1,k) + T(n-1,k-1); end if; end function; [T(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Oct 03 2023
-
Mathematica
(* First program *) rows = 10; b[n_, m_] := BellY[n, m, Table[k! Binomial[5, k], {k, 0, rows}]]; A = Table[b[n, m], {n, 1, rows}, {m, 1, rows}] // Inverse // Abs; A013988 = Table[A[[n, m]], {n, 1, rows}, {m, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018 *) (* Second program *) T[n_, k_]:= T[n, k]= If[k==0, 0, If[k==n, 1, (6*(n-1) -k)*T[n-1,k] +T[n-1, k-1]]]; Table[T[n,k], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Oct 03 2023 *)
-
Sage
# uses[inverse_bell_matrix from A264428] # Adds 1,0,0,0, ... as column 0 at the left side of the triangle. inverse_bell_matrix(lambda n: factorial(n)*binomial(5, n), 8) # Peter Luschny, Jan 16 2016
A157403 A partition product of Stirling_2 type [parameter k = 3] with biggest-part statistic (triangle read by rows).
1, 1, 3, 1, 9, 21, 1, 45, 84, 231, 1, 165, 840, 1155, 3465, 1, 855, 8610, 13860, 20790, 65835, 1, 3843, 64680, 250635, 291060, 460845, 1514205, 1, 21819, 689136, 3969735, 6015240, 7373520, 12113640, 40883535, 1, 114075
Offset: 1
Comments
Links
- Peter Luschny, Counting with Partitions.
- Peter Luschny, Generalized Stirling_2 Triangles.
Crossrefs
Formula
T(n,0) = [n = 0] (Iverson notation) and for n > 0 and 1 <= m <= n
T(n,m) = Sum_{a} M(a)|f^a| where a = a_1,..,a_n such that
1*a_1+2*a_2+...+n*a_n = n and max{a_i} = m, M(a) = n!/(a_1!*..*a_n!),
f^a = (f_1/1!)^a_1*..*(f_n/n!)^a_n and f_n = product_{j=0..n-1}(4*j - 1).
A144280 Lower triangular array called S2hat(-3) related to partition number array A144279.
1, 3, 1, 21, 3, 1, 231, 30, 3, 1, 3465, 294, 30, 3, 1, 65835, 4599, 321, 30, 3, 1, 1514205, 81081, 4788, 321, 30, 3, 1, 40883535, 1837836, 84483, 4869, 321, 30, 3, 1, 1267389585, 47609100, 1892835, 85050, 4869, 321, 30, 3, 1, 44358635475, 1449052605, 48681864
Offset: 1
Comments
Examples
Triangle begins: [1]; [3,1]; [21,3,1]; [231,30,3,1]; [3465,294,30,3,1]; ...
Links
- Wolfdieter Lang, First 10 rows of the array and more.
- Wolfdieter Lang, Combinatorial Interpretation of Generalized Stirling Numbers, J. Int. Seqs. Vol. 12 (2009) 09.3.3.
Crossrefs
Formula
a(n,m) = Sum_{q=1..p(n,m)} Product_{j=1..n} |S2(-3;j,1)|^e(n,m,q,j) if n>=m>=1, else 0. Here p(n,m)=A008284(n,m), the number of m parts partitions of n and e(n,m,q,j) is the exponent of j in the q-th m part partition of n. |S2(-3,n,1)|= A000369(n,1) = A008545(n-1) = (4*n-5)(!^4) (4-factorials) for n>=2 and 1 if n=1.
A049410 A triangle of numbers related to triangle A049325.
1, 3, 1, 6, 9, 1, 6, 51, 18, 1, 0, 210, 195, 30, 1, 0, 630, 1575, 525, 45, 1, 0, 1260, 10080, 6825, 1155, 63, 1, 0, 1260, 51660, 71505, 21840, 2226, 84, 1, 0, 0, 207900, 623700, 333585, 57456, 3906, 108, 1, 0, 0, 623700, 4573800, 4293135, 1195425, 131670
Offset: 1
Comments
a(n,1)= A008279(3,n-1). a(n,m)=: S1(-3; n,m), a member of a sequence of lower triangular Jabotinsky matrices, including S1(1; n,m)= A008275 (signed Stirling first kind), S1(2; n,m)= A008297(n,m) (signed Lah numbers). a(n,m) matrix is inverse to signed matrix ((-1)^(n-m))*A000369(n,m).
The monic row polynomials E(n,x) := sum(a(n,m)*x^m,m=1..n), E(0,x) := 1 are exponential convolution polynomials (see A039692 for the definition and a Knuth reference).
Also the inverse Bell transform of the quadruple factorial numbers Product_{k=0..n-1} (4*k+3) (A008545) adding 1,0,0,0,... as column 0. For the definition of the Bell transform see A264428 and for cross-references A265604. - Peter Luschny, Dec 31 2015
Examples
Triangle begins: {1}; {3,1}; {6,9,1}; {6,51,18,1}; ... E.g. row polynomial E(3,x)= 6*x+9*x^2+x^3.
Links
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
Crossrefs
Row sums give A049426.
Programs
-
Mathematica
rows = 10; t = Table[Product[4k+3, {k, 0, n-1}], {n, 0, rows}]; T[n_, k_] := BellY[n, k, t]; M = Inverse[Array[T, {rows, rows}]] // Abs; A049325 = Table[M[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
-
Sage
# uses[inverse_bell_transform from A265605] # Adds a column 1,0,0,0,... at the left side of the triangle. multifact_4_3 = lambda n: prod(4*k + 3 for k in (0..n-1)) inverse_bell_matrix(multifact_4_3, 9) # Peter Luschny, Dec 31 2015
Formula
a(n, m) = n!*A049325(n, m)/(m!*4^(n-m)); a(n, m) = (4*m-n+1)*a(n-1, m) + a(n-1, m-1), n >= m >= 1; a(n, m)=0, n
A265606 Triangle read by rows: The Bell transform of the quartic factorial numbers (A007696).
1, 0, 1, 0, 1, 1, 0, 5, 3, 1, 0, 45, 23, 6, 1, 0, 585, 275, 65, 10, 1, 0, 9945, 4435, 990, 145, 15, 1, 0, 208845, 89775, 19285, 2730, 280, 21, 1, 0, 5221125, 2183895, 456190, 62965, 6370, 490, 28, 1, 0, 151412625, 62002395, 12676265, 1715490, 171255, 13230, 798, 36, 1
Offset: 0
Examples
[1], [0, 1], [0, 1, 1], [0, 5, 3, 1], [0, 45, 23, 6, 1], [0, 585, 275, 65, 10, 1], [0, 9945, 4435, 990, 145, 15, 1], [0, 208845, 89775, 19285, 2730, 280, 21, 1],
Links
- Richell O. Celeste, Roberto B. Corcino, and Ken Joffaniel M. Gonzales. Two Approaches to Normal Order Coefficients, Journal of Integer Sequences, Vol. 20 (2017), Article 17.3.5.
- Peter Luschny, The Bell transform
Crossrefs
Programs
-
Mathematica
(* The function BellMatrix is defined in A264428. *) rows = 10; M = BellMatrix[Pochhammer[1/4, #] 4^# &, rows]; Table[M[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 23 2019 *)
-
Sage
# uses[bell_transform from A264428] def A265606_row(n): multifact_4_1 = lambda n: prod(4*k + 1 for k in (0..n-1)) mfact = [multifact_4_1(k) for k in (0..n)] return bell_transform(n, mfact) [A265606_row(n) for n in (0..7)]
Comments