cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A004747 Triangle read by rows: the Bell transform of the triple factorial numbers A008544 without column 0.

Original entry on oeis.org

1, 2, 1, 10, 6, 1, 80, 52, 12, 1, 880, 600, 160, 20, 1, 12320, 8680, 2520, 380, 30, 1, 209440, 151200, 46480, 7840, 770, 42, 1, 4188800, 3082240, 987840, 179760, 20160, 1400, 56, 1, 96342400, 71998080, 23826880, 4583040, 562800, 45360, 2352, 72, 1
Offset: 1

Views

Author

Keywords

Comments

Previous name was: Triangle of numbers related to triangle A048966; generalization of Stirling numbers of second kind A008277, Bessel triangle A001497.
T(n,m) = S2p(-2; n,m), a member of a sequence of triangles including S2p(-1; n,m) = A001497(n-1,m-1) (Bessel triangle) and ((-1)^(n-m))*S2p(1; n,m) = A008277(n, m) (Stirling 2nd kind). T(n,1)= A008544(n-1).
T(n,m), n>=m>=1, enumerates unordered n-vertex m-forests composed of m plane (aka ordered) increasing (rooted) trees where vertices of out-degree r>=0 come in r+1 different types (like an (r+1)-ary vertex). Proof from the e.g.f. of the first column Y(z) = 1 - (1-3*x)^(1/3) and the F. Bergeron et al. eq. (8) Y'(z)= phi(Y(z)), Y(0) = 0, with out-degree o.g.f. phi(w)=1/(1-w)^2. - Wolfdieter Lang, Oct 12 2007
Also the Bell transform of the triple factorial numbers A008544 which adds a first column (1,0,0 ...) on the left side of the triangle. For the definition of the Bell transform see A264428. See A051141 for the triple factorial numbers A032031 and A203412 for the triple factorial numbers A007559 as well as A039683 and A132062 for the case of double factorial numbers. - Peter Luschny, Dec 21 2015

Examples

			Triangle begins:
       1;
       2,      1;
      10,      6,     1;
      80,     52,    12,    1;
     880,    600,   160,   20,   1;
   12320,   8680,  2520,  380,  30,  1;
  209440, 151200, 46480, 7840, 770, 42, 1;
Tree combinatorics for T(3,2)=6: Consider first the unordered forest of m=2 plane trees with n=3 vertices, namely one vertex with out-degree r=0 (root) and two different trees with two vertices (one root with out-degree r=1 and a leaf with r=0). The 6 increasing labelings come then from the forest with rooted (x) trees x, o-x (1,(3,2)), (2,(3,1)) and (3,(2,1)) and similarly from the second forest x, x-o (1,(2,3)), (2,(1,3)) and (3,(1,2)).
		

Crossrefs

Cf. A015735 (row sums).
Triangles with the recurrence T(n,k) = (m*(n-1)-k)*T(n-1,k) + T(n-1,k-1): A010054 (m=1), A001497 (m=2), this sequence (m=3), A000369 (m=4), A011801 (m=5), A013988 (m=6).

Programs

  • Magma
    function T(n,k) // T = A004747
      if k eq 0 then return 0;
      elif k eq n then return 1;
      else return (3*(n-1)-k)*T(n-1,k) + T(n-1,k-1);
      end if;
    end function;
    [T(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Oct 03 2023
  • Maple
    T := (n, m) -> 3^n/m!*(1/3*m*GAMMA(n-1/3)*hypergeom([1-1/3*m, 2/3-1/3*m, 1/3-1/3*m], [2/3, 4/3-n], 1)/GAMMA(2/3)-1/6*m*(m-1)*GAMMA(n-2/3)*hypergeom( [1-1/3*m, 2/3-1/3*m, 4/3-1/3*m], [4/3, 5/3-n], 1)/Pi*3^(1/2)*GAMMA(2/3)):
    for n from 1 to 6 do seq(simplify(T(n,k)),k=1..n) od;
    # Karol A. Penson, Feb 06 2004
    # The function BellMatrix is defined in A264428.
    # Adds (1,0,0,0, ..) as column 0.
    BellMatrix(n -> mul(3*k+2, k=(0..n-1)), 9); # Peter Luschny, Jan 29 2016
  • Mathematica
    (* First program *)
    T[1,1]= 1; T[, 0]= 0; T[0, ]= 0; T[n_, m_]:= (3*(n-1)-m)*T[n-1, m]+T[n-1, m-1];
    Flatten[Table[T[n, m], {n,12}, {m,n}] ][[1 ;; 45]] (* Jean-François Alcover, Jun 16 2011, after recurrence *)
    (* Second program *)
    f[n_, m_]:= m/n Sum[Binomial[k, n-m-k] 3^k (-1)^(n-m-k) Binomial[n+k-1, n-1], {k, 0, n-m}]; Table[n! f[n, m]/(m! 3^(n-m)), {n,12}, {m,n}]//Flatten (* Michael De Vlieger, Dec 23 2015 *)
    (* Third program *)
    rows = 12;
    T[n_, m_]:= BellY[n, m, Table[Product[3k+2, {k, 0, j-1}], {j, 0, rows}]];
    Table[T[n, m], {n,rows}, {m,n}]//Flatten (* Jean-François Alcover, Jun 22 2018 *)
  • Sage
    # uses [bell_transform from A264428]
    triplefactorial = lambda n: prod(3*k+2 for k in (0..n-1))
    def A004747_row(n):
        trifact = [triplefactorial(k) for k in (0..n)]
        return bell_transform(n, trifact)
    [A004747_row(n) for n in (0..10)] # Peter Luschny, Dec 21 2015
    

Formula

T(n, m) = n!*A048966(n, m)/(m!*3^(n-m));
T(n+1, m) = (3*n-m)*T(n, m)+ T(n, m-1), for n >= m >= 1, with T(n, m) = 0, for n
E.g.f. of m-th column: ( 1 - (1-3*x)^(1/3) )^m/m!.
Sum_{k=1..n} T(n, k) = A015735(n).
For a formula expressed as special values of hypergeometric functions 3F2 see the Maple program below. - Karol A. Penson, Feb 06 2004
T(n,1) = A008544(n-1). - Peter Luschny, Dec 23 2015

Extensions

New name from Peter Luschny, Dec 21 2015

A011801 Triangle read by rows, the inverse Bell transform of n!*binomial(4,n) (without column 0).

Original entry on oeis.org

1, 4, 1, 36, 12, 1, 504, 192, 24, 1, 9576, 3960, 600, 40, 1, 229824, 100656, 17160, 1440, 60, 1, 6664896, 3048192, 563976, 54600, 2940, 84, 1, 226606464, 107255232, 21095424, 2256576, 142800, 5376, 112, 1, 8837652096, 4302305280, 887785920, 102332160, 7254576, 325584, 9072, 144, 1
Offset: 1

Keywords

Comments

Previous name was: Triangle of numbers related to triangle A049223; generalization of Stirling numbers of second kind A008277, Bessel triangle A001497.
T(n, m) = S2p(-4; n,m), a member of a sequence of triangles including S2p(-1; n,m) = A001497(n-1,m-1) (Bessel triangle) and ((-1)^(n-m))*S2p(1; n,m) = A008277(n,m) (Stirling 2nd kind). T(n, 1) = A008546(n-1).
For the definition of the Bell transform see A264428 and the link. - Peter Luschny, Jan 16 2016

Examples

			Triangle starts:
          1;
          4,         1;
         36,        12,        1;
        504,       192,       24,       1;
       9576,      3960,      600,      40,      1;
     229824,    100656,    17160,    1440,     60,     1;
    6664896,   3048192,   563976,   54600,   2940,    84,    1;
  226606464, 107255232, 21095424, 2256576, 142800,  5376,  112,   1;
		

Crossrefs

Cf. A028575 (row sums).
Triangles with the recurrence T(n,k) = (m*(n-1)-k)*T(n-1,k) + T(n-1,k-1): A010054 (m=1), A001497 (m=2), A004747 (m=3), A000369 (m=4), this sequence (m=5), A013988 (m=6).

Programs

  • Magma
    function T(n,k) // T = A011801
      if k eq 0 then return 0;
      elif k eq n then return 1;
      else return (5*(n-1)-k)*T(n-1,k) + T(n-1,k-1);
      end if;
    end function;
    [T(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Oct 03 2023
  • Mathematica
    (* First program *)
    T[n_, m_] /; n>=m>=1:= T[n, m]= (5*(n-1)-m)*T[n-1, m] + T[n-1, m-1]; T[n_, m_] /; nJean-François Alcover, Jun 20 2018 *)
    (* Second program *)
    rows = 10;
    b[n_, m_]:= BellY[n, m, Table[k! Binomial[4, k], {k, 0, rows}]];
    T= Table[b[n, m], {n,rows}, {m,rows}]//Inverse//Abs;
    A011801= Table[T[[n, m]], {n,rows}, {m,n}]//Flatten (* Jean-François Alcover, Jun 22 2018 *)
  • Sage
    # uses[inverse_bell_matrix from A264428]
    # Adds 1,0,0,0, ... as column 0 at the left side of the triangle.
    inverse_bell_matrix(lambda n: factorial(n)*binomial(4, n), 8) # Peter Luschny, Jan 16 2016
    

Formula

T(n, m) = n!*A049223(n, m)/(m!*5^(n-m)).
T(n+1, m) = (5*n-m)*T(n, m) + T(n, m-1), for n >= m >= 1, with T(n, m) = 0, for n < m, and T(n, 0) = 0, T(1, 1) = 1.
E.g.f. of n-th column: (1/n!)*( 1 - (1-5*x)^(1/5) )^n.
Sum_{k=1..n} T(n, k) = A028575(n).

Extensions

New name from Peter Luschny, Jan 16 2016

A013988 Triangle read by rows, the inverse Bell transform of n!*binomial(5,n) (without column 0).

Original entry on oeis.org

1, 5, 1, 55, 15, 1, 935, 295, 30, 1, 21505, 7425, 925, 50, 1, 623645, 229405, 32400, 2225, 75, 1, 21827575, 8423415, 1298605, 103600, 4550, 105, 1, 894930575, 358764175, 59069010, 5235405, 271950, 8330, 140, 1, 42061737025, 17398082625, 3016869625, 289426830, 16929255, 621810, 14070, 180, 1
Offset: 1

Keywords

Comments

Previous name was: Triangle of numbers related to triangle A049224; generalization of Stirling numbers of second kind A008277, Bessel triangle A001497.
T(n, m) = S2p(-5; n,m), a member of a sequence of triangles including S2p(-1; n,m) = A001497(n-1,m-1) (Bessel triangle) and ((-1)^(n-m))*S2p(1; n,m) = A008277(n,m) (Stirling 2nd kind). T(n, 1) = A008543(n-1).
For the definition of the Bell transform see A264428 and the link. - Peter Luschny, Jan 16 2016

Examples

			Triangle begins as:
          1;
          5,         1;
         55,        15,        1;
        935,       295,       30,       1;
      21505,      7425,      925,      50,      1;
     623645,    229405,    32400,    2225,     75,     1;
   21827575,   8423415,  1298605,  103600,   4550,   105,    1;
  894930575, 358764175, 59069010, 5235405, 271950,  8330,  140,   1;
		

Crossrefs

Cf. A028844 (row sums).
Triangles with the recurrence T(n,k) = (m*(n-1)-k)*T(n-1,k) + T(n-1,k-1): A010054 (m=1), A001497 (m=2), A004747 (m=3), A000369 (m=4), A011801 (m=5), this sequence (m=6).

Programs

  • Magma
    function T(n,k) // T = A013988
      if k eq 0 then return 0;
      elif k eq n then return 1;
      else return (6*(n-1)-k)*T(n-1,k) + T(n-1,k-1);
      end if;
    end function;
    [T(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Oct 03 2023
  • Mathematica
    (* First program *)
    rows = 10;
    b[n_, m_] := BellY[n, m, Table[k! Binomial[5, k], {k, 0, rows}]];
    A = Table[b[n, m], {n, 1, rows}, {m, 1, rows}] // Inverse // Abs;
    A013988 = Table[A[[n, m]], {n, 1, rows}, {m, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018 *)
    (* Second program *)
    T[n_, k_]:= T[n, k]= If[k==0, 0, If[k==n, 1, (6*(n-1) -k)*T[n-1,k] +T[n-1, k-1]]];
    Table[T[n,k], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Oct 03 2023 *)
  • Sage
    # uses[inverse_bell_matrix from A264428]
    # Adds 1,0,0,0, ... as column 0 at the left side of the triangle.
    inverse_bell_matrix(lambda n: factorial(n)*binomial(5, n), 8) # Peter Luschny, Jan 16 2016
    

Formula

T(n, m) = n!*A049224(n, m)/(m!*6^(n-m));
T(n+1, m) = (6*n-m)*T(n, m) + T(n, m-1), for n >= m >= 1, with T(n, m) = 0, n
E.g.f. of m-th column: ((1 - (1-6*x)^(1/6))^m)/m!.
Sum_{k=1..n} T(n, k) = A028844(n).

Extensions

New name from Peter Luschny, Jan 16 2016

A157403 A partition product of Stirling_2 type [parameter k = 3] with biggest-part statistic (triangle read by rows).

Original entry on oeis.org

1, 1, 3, 1, 9, 21, 1, 45, 84, 231, 1, 165, 840, 1155, 3465, 1, 855, 8610, 13860, 20790, 65835, 1, 3843, 64680, 250635, 291060, 460845, 1514205, 1, 21819, 689136, 3969735, 6015240, 7373520, 12113640, 40883535, 1, 114075
Offset: 1

Author

Peter Luschny, Mar 09 2009

Keywords

Comments

Partition product of prod_{j=0..n-1}((k + 1)*j - 1) and n! at k = 3,
summed over parts with equal biggest part (see the Luschny link).
Underlying partition triangle is A143173.
Same partition product with length statistic is A000369.
Diagonal a(A000217) = A008545
Row sum is A016036.

Formula

T(n,0) = [n = 0] (Iverson notation) and for n > 0 and 1 <= m <= n
T(n,m) = Sum_{a} M(a)|f^a| where a = a_1,..,a_n such that
1*a_1+2*a_2+...+n*a_n = n and max{a_i} = m, M(a) = n!/(a_1!*..*a_n!),
f^a = (f_1/1!)^a_1*..*(f_n/n!)^a_n and f_n = product_{j=0..n-1}(4*j - 1).

A144280 Lower triangular array called S2hat(-3) related to partition number array A144279.

Original entry on oeis.org

1, 3, 1, 21, 3, 1, 231, 30, 3, 1, 3465, 294, 30, 3, 1, 65835, 4599, 321, 30, 3, 1, 1514205, 81081, 4788, 321, 30, 3, 1, 40883535, 1837836, 84483, 4869, 321, 30, 3, 1, 1267389585, 47609100, 1892835, 85050, 4869, 321, 30, 3, 1, 44358635475, 1449052605, 48681864
Offset: 1

Author

Wolfdieter Lang, Oct 09 2008

Keywords

Comments

If in the partition array M32khat(-3)= A144279 entries with the same parts number m are summed one obtains this triangle of numbers S2hat(-3). In the same way the Stirling2 triangle A008277 is obtained from the partition array M_3 = A036040.
The first three columns are A008545, A144282, A144283.

Examples

			Triangle begins:
  [1];
  [3,1];
  [21,3,1];
  [231,30,3,1];
  [3465,294,30,3,1];
  ...
		

Crossrefs

Row sums A144281.
Cf. A144275 (S2hat(-2)).

Formula

a(n,m) = Sum_{q=1..p(n,m)} Product_{j=1..n} |S2(-3;j,1)|^e(n,m,q,j) if n>=m>=1, else 0. Here p(n,m)=A008284(n,m), the number of m parts partitions of n and e(n,m,q,j) is the exponent of j in the q-th m part partition of n. |S2(-3,n,1)|= A000369(n,1) = A008545(n-1) = (4*n-5)(!^4) (4-factorials) for n>=2 and 1 if n=1.

A049410 A triangle of numbers related to triangle A049325.

Original entry on oeis.org

1, 3, 1, 6, 9, 1, 6, 51, 18, 1, 0, 210, 195, 30, 1, 0, 630, 1575, 525, 45, 1, 0, 1260, 10080, 6825, 1155, 63, 1, 0, 1260, 51660, 71505, 21840, 2226, 84, 1, 0, 0, 207900, 623700, 333585, 57456, 3906, 108, 1, 0, 0, 623700, 4573800, 4293135, 1195425, 131670
Offset: 1

Keywords

Comments

a(n,1)= A008279(3,n-1). a(n,m)=: S1(-3; n,m), a member of a sequence of lower triangular Jabotinsky matrices, including S1(1; n,m)= A008275 (signed Stirling first kind), S1(2; n,m)= A008297(n,m) (signed Lah numbers). a(n,m) matrix is inverse to signed matrix ((-1)^(n-m))*A000369(n,m).
The monic row polynomials E(n,x) := sum(a(n,m)*x^m,m=1..n), E(0,x) := 1 are exponential convolution polynomials (see A039692 for the definition and a Knuth reference).
Also the inverse Bell transform of the quadruple factorial numbers Product_{k=0..n-1} (4*k+3) (A008545) adding 1,0,0,0,... as column 0. For the definition of the Bell transform see A264428 and for cross-references A265604. - Peter Luschny, Dec 31 2015

Examples

			Triangle begins:
  {1};
  {3,1};
  {6,9,1};
  {6,51,18,1};
  ...
E.g. row polynomial E(3,x)= 6*x+9*x^2+x^3.
		

Crossrefs

Row sums give A049426.

Programs

  • Mathematica
    rows = 10;
    t = Table[Product[4k+3, {k, 0, n-1}], {n, 0, rows}];
    T[n_, k_] := BellY[n, k, t];
    M = Inverse[Array[T, {rows, rows}]] // Abs;
    A049325 = Table[M[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
  • Sage
    # uses[inverse_bell_transform from A265605]
    # Adds a column 1,0,0,0,... at the left side of the triangle.
    multifact_4_3 = lambda n: prod(4*k + 3 for k in (0..n-1))
    inverse_bell_matrix(multifact_4_3, 9) # Peter Luschny, Dec 31 2015

Formula

a(n, m) = n!*A049325(n, m)/(m!*4^(n-m)); a(n, m) = (4*m-n+1)*a(n-1, m) + a(n-1, m-1), n >= m >= 1; a(n, m)=0, n

A265606 Triangle read by rows: The Bell transform of the quartic factorial numbers (A007696).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 5, 3, 1, 0, 45, 23, 6, 1, 0, 585, 275, 65, 10, 1, 0, 9945, 4435, 990, 145, 15, 1, 0, 208845, 89775, 19285, 2730, 280, 21, 1, 0, 5221125, 2183895, 456190, 62965, 6370, 490, 28, 1, 0, 151412625, 62002395, 12676265, 1715490, 171255, 13230, 798, 36, 1
Offset: 0

Author

Peter Luschny, Dec 30 2015

Keywords

Examples

			[1],
[0, 1],
[0, 1, 1],
[0, 5, 3, 1],
[0, 45, 23, 6, 1],
[0, 585, 275, 65, 10, 1],
[0, 9945, 4435, 990, 145, 15, 1],
[0, 208845, 89775, 19285, 2730, 280, 21, 1],
		

Crossrefs

Bell transforms of other multifactorials are: A000369, A004747, A039683, A051141, A051142, A119274, A132062, A132393, A203412.

Programs

  • Mathematica
    (* The function BellMatrix is defined in A264428. *)
    rows = 10;
    M = BellMatrix[Pochhammer[1/4, #] 4^# &, rows];
    Table[M[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 23 2019 *)
  • Sage
    # uses[bell_transform from A264428]
    def A265606_row(n):
        multifact_4_1 = lambda n: prod(4*k + 1 for k in (0..n-1))
        mfact = [multifact_4_1(k) for k in (0..n)]
        return bell_transform(n, mfact)
    [A265606_row(n) for n in (0..7)]
Previous Showing 11-17 of 17 results.