cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A346844 E.g.f.: exp(exp(x) - 1) * (exp(x) - 1)^5 / 5!.

Original entry on oeis.org

1, 21, 287, 3290, 34671, 350889, 3492511, 34669734, 346231886, 3497726232, 35872743270, 374387203190, 3982122624117, 43207791878715, 478532965417529, 5411213661200830, 62482405993313229, 736696756305382411, 8868148033487285103, 108969560832001750716
Offset: 5

Views

Author

Ilya Gutkovskiy, Aug 05 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, m) option remember;
         `if`(n=0, binomial(m, 5), m*b(n-1, m)+b(n-1, m+1))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=5..24);  # Alois P. Heinz, Aug 05 2021
  • Mathematica
    nmax = 24; CoefficientList[Series[Exp[Exp[x] - 1] (Exp[x] - 1)^5/5!, {x, 0, nmax}], x] Range[0, nmax]! // Drop[#, 5] &
    Table[Sum[StirlingS2[n, k] Binomial[k, 5], {k, 0, n}], {n, 5, 24}]
    Table[Sum[Binomial[n, k] StirlingS2[k, 5] BellB[n - k], {k, 0, n}], {n, 5, 24}]
    Table[(-BellB[n] + 89*BellB[n+1] - 145*BellB[n+2] + 75*BellB[n+3] - 15*BellB[n+4] + BellB[n+5])/120, {n, 5, 24}] (* Vaclav Kotesovec, Aug 06 2021 *)
  • PARI
    my(x='x+O('x^25)); Vec(serlaplace(exp(exp(x)-1)*(exp(x)-1)^5/5!)) \\ Michel Marcus, Aug 06 2021

Formula

a(n) = Sum_{k=0..n} Stirling2(n,k) * binomial(k,5).
a(n) = Sum_{k=0..n} binomial(n,k) * Stirling2(k,5) * Bell(n-k).
a(n) = (-Bell(n) + 89*Bell(n+1) - 145*Bell(n+2) + 75*Bell(n+3) - 15*Bell(n+4) + Bell(n+5))/120. - Vaclav Kotesovec, Aug 06 2021

A056281 Number of primitive (aperiodic) word structures of length n which contain exactly five different symbols.

Original entry on oeis.org

0, 0, 0, 0, 1, 15, 140, 1050, 6951, 42524, 246730, 1379385, 7508501, 40074895, 210766919, 1096189500, 5652751651, 28958088579, 147589284710, 749206047975, 3791262568261, 19137821665325, 96416888184100
Offset: 1

Views

Author

Keywords

Comments

Permuting the alphabet will not change a word structure. Thus aabc and bbca have the same structure.

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column 5 of A137651.
Cf. A056270.

Formula

a(n) = Sum_{n > 0, d|n} mu(d)*A000481(n/d).
G.f.: Sum_{k>=1} mu(k) * x^(5*k) / Product_{j=1..5} (1 - j*x^k). - Ilya Gutkovskiy, Apr 15 2021

A056474 Number of palindromic structures using exactly five different symbols.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 15, 15, 140, 140, 1050, 1050, 6951, 6951, 42525, 42525, 246730, 246730, 1379400, 1379400, 7508501, 7508501, 40075035, 40075035, 210766920, 210766920, 1096190550
Offset: 1

Views

Author

Keywords

Comments

Permuting the symbols will not change the structure.

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Programs

  • Mathematica
    Table[StirlingS2[Floor[(n+1)/2],5],{n,40}] (* Harvey P. Dale, Dec 18 2012 *)

Formula

stirling2( [(n+1)/2], 5).
G.f.: -x^9/((x-1)*(2*x-1)*(2*x+1)*(2*x^2-1)*(3*x^2-1)*(5*x^2-1)). [Colin Barker, Jul 24 2012]

A373173 Triangle read by rows: the exponential almost-Riordan array ( exp(exp(x)-1) | exp(x), exp(x)-1 ).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 5, 1, 3, 1, 15, 1, 7, 6, 1, 52, 1, 15, 25, 10, 1, 203, 1, 31, 90, 65, 15, 1, 877, 1, 63, 301, 350, 140, 21, 1, 4140, 1, 127, 966, 1701, 1050, 266, 28, 1, 21147, 1, 255, 3025, 7770, 6951, 2646, 462, 36, 1, 115975, 1, 511, 9330, 34105, 42525, 22827, 5880, 750, 45, 1
Offset: 0

Views

Author

Stefano Spezia, May 26 2024

Keywords

Examples

			The triangle begins:
    1;
    1, 1;
    2, 1,  1;
    5, 1,  3,  1;
   15, 1,  7,  6,  1;
   52, 1, 15, 25, 10,  1;
  203, 1, 31, 90, 65, 15, 1;
  ...
		

Crossrefs

Cf. A000012 (k=1), A000225, A000392 (k=3), A000453 (k=4), A000481 (k=5), A000770 (k=6), A000771 (k=7), A049394 (k=8), A049435 (k=10), A049447 (k=9).
Triangle A008277 with 1st column A000110.

Programs

  • Mathematica
    T[n_,0]:=n!SeriesCoefficient[Exp[Exp[x]-1],{x,0,n}]; T[n_,k_]:=(n-1)!/(k-1)!SeriesCoefficient[Exp[x](Exp[x]-1)^(k-1),{x,0,n-1}]; Table[T[n,k],{n,0,10},{k,0,n}]//Flatten

Formula

T(n,0) = n! * [x^n] exp(exp(x)-1); T(n,k) = (n-1)!/(k-1)! * [x^(n-1)] exp(x)*(exp(x)-1)^(k-1).
T(n,2) = A000225(n-1) for n > 1.
Previous Showing 11-14 of 14 results.