A140157
a(1)=1, a(n) = a(n-1) + n^4 if n odd, a(n) = a(n-1) + n^0 if n is even.
Original entry on oeis.org
1, 2, 83, 84, 709, 710, 3111, 3112, 9673, 9674, 24315, 24316, 52877, 52878, 103503, 103504, 187025, 187026, 317347, 317348, 511829, 511830, 791671, 791672, 1182297, 1182298, 1713739, 1713740, 2421021, 2421022, 3344543, 3344544, 4530465
Offset: 1
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,5,-5,-10,10,10,-10,-5,5,1,-1).
-
[(1/60)*(15*(-1 + (-1)^n) + (29 +15*(-1)^n)*n + 10*(1 -3*(-1)^n)*n^3 + 15*(1 -(-1)^n)*n^4 + 6*n^5): n in [1..50]]; // G. C. Greubel, Jul 05 2018
-
a = {}; r = 4; s = 0; Do[k = 0; Do[k = k + (Sin[Pi m/2]^2) m^r + (Cos[Pi m/2]^2) m^s, {m, 1, n}]; AppendTo[a, k], {n, 1, 100}]; a (* Artur Jasinski *)
LinearRecurrence[{1,5,-5,-10,10,10,-10,-5,5,1,-1}, {1, 2, 83, 84, 709, 710, 3111, 3112, 9673, 9674, 24315}, 50] (* or *) Table[(1/60)*(15*(-1 + (-1)^n) + (29 +15*(-1)^n)*n + 10*(1 -3*(-1)^n)*n^3 + 15*(1 -(-1)^n)*n^4 + 6*n^5), {n,1,50}] (* G. C. Greubel, Jul 05 2018 *)
-
for(n=1,50, print1((1/60)*(15*(-1 + (-1)^n) + (29 +15*(-1)^n)*n + 10*(1 -3*(-1)^n)*n^3 + 15*(1 -(-1)^n)*n^4 + 6*n^5), ", ")) \\ G. C. Greubel, Jul 05 2018
A140158
a(1)=1, a(n) = a(n-1) + n^4 if n odd, a(n) = a(n-1) + n^1 if n is even.
Original entry on oeis.org
1, 3, 84, 88, 713, 719, 3120, 3128, 9689, 9699, 24340, 24352, 52913, 52927, 103552, 103568, 187089, 187107, 317428, 317448, 511929, 511951, 791792, 791816, 1182441, 1182467, 1713908, 1713936, 2421217, 2421247, 3344768, 3344800, 4530721
Offset: 1
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,5,-5,-10,10,10,-10,-5,5,1,-1).
-
[(1/120)*(15*(-1 +(-1)^n) + (28 + 60*(-1)^n)*n + 30*n^2 + 20*(1 - 3*(-1)^n)*n^3 + 30*(1 -(-1)^n)*n^4 + 12*n^5): n in [1..50]]; // G. C. Greubel, Jul 05 2018
-
a = {}; r = 4; s = 1; Do[k = 0; Do[k = k + (Sin[Pi m/2]^2) m^r + (Cos[Pi m/2]^2) m^s, {m, 1, n}]; AppendTo[a, k], {n, 1, 100}]; a (* Artur Jasinski *)
LinearRecurrence[{1,5,-5,-10,10,10,-10,-5,5,1,-1}, {1, 3, 84, 88, 713, 719, 3120, 3128, 9689, 9699, 24340}, 50] (* or *) Table[(1/120)*(15*(-1 +(-1)^n) + (28 + 60*(-1)^n)*n + 30*n^2 + 20*(1 - 3*(-1)^n)*n^3 + 30*(1 -(-1)^n)*n^4 + 12*n^5), {n,1,50}] (* G. C. Greubel, Jul 05 2018 *)
nxt[{n_,a_}]:={n+1,If[EvenQ[n],a+(n+1)^4,a+n+1]}; NestList[nxt,{1,1},40][[;;,2]] (* Harvey P. Dale, Dec 28 2024 *)
-
for(n=1,50, print1((1/120)*(15*(-1 +(-1)^n) + (28 + 60*(-1)^n)*n + 30*n^2 + 20*(1 - 3*(-1)^n)*n^3 + 30*(1 -(-1)^n)*n^4 + 12*n^5), ", ")) \\ G. C. Greubel, Jul 05 2018
A140159
a(1)=1, a(n) = a(n-1) + n^4 if n odd, a(n) = a(n-1) + n^2 if n is even.
Original entry on oeis.org
1, 5, 86, 102, 727, 763, 3164, 3228, 9789, 9889, 24530, 24674, 53235, 53431, 104056, 104312, 187833, 188157, 318478, 318878, 513359, 513843, 793684, 794260, 1184885, 1185561, 1717002, 1717786, 2425067, 2425967, 3349488, 3350512, 4536433
Offset: 1
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,5,-5,-10,10,10,-10,-5,5,1,-1).
-
[(1/60)*(n +n^2)* (4 + 30*(-1)^n + (11 -15*(-1)^n)*n + (9 -15*(-1)^n)*n^2 + 6*n^3): n in [1..50]]; // G. C. Greubel, Jul 05 2018
-
a = {}; r = 4; s = 2; Do[k = 0; Do[k = k + (Sin[Pi m/2]^2) m^r + (Cos[Pi m/2]^2) m^s, {m, 1, n}]; AppendTo[a, k], {n, 1, 100}]; a (*Artur Jasinski*)
nxt[{n_,a_}]:={n+1,If[EvenQ[n],a+(n+1)^4,a+(n+1)^2]}; NestList[nxt, {1, 1}, 40][[All, 2]] (* Harvey P. Dale, Sep 21 2016 *)
LinearRecurrence[{1,5,-5,-10,10,10,-10,-5,5,1,-1}, {1, 5, 86, 102, 727, 763, 3164, 3228, 9789, 9889, 24530}, 50] (* or *) Table[(1/60)*(n +n^2)* (4 + 30*(-1)^n + (11 -15*(-1)^n)*n + (9 -15*(-1)^n)*n^2 + 6*n^3), {n,1, 50}] (* G. C. Greubel, Jul 05 2018 *)
-
for(n=1,50, print1((1/60)*(n +n^2)* (4 + 30*(-1)^n + (11 -15*(-1)^n)*n + (9 -15*(-1)^n)*n^2 + 6*n^3), ", ")) \\ G. C. Greubel, Jul 05 2018
A140160
a(1)=1, a(n) = a(n-1) + n^4 if n odd, a(n) = a(n-1) + n^3 if n is even.
Original entry on oeis.org
1, 9, 90, 154, 779, 995, 3396, 3908, 10469, 11469, 26110, 27838, 56399, 59143, 109768, 113864, 197385, 203217, 333538, 341538, 536019, 546667, 826508, 840332, 1230957, 1248533, 1779974, 1801926, 2509207, 2536207, 3459728, 3492496
Offset: 1
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,5,-5,-10,10,10,-10,-5,5,1,-1).
-
[(1/240)*(15*(1 -(-1)^n) - 4*(1 - 15*(-1)^n)*n + 30*(1 + 3(-1)^n)*n^2 + 20*(5 - 3*(-1)^n)*n^3 + 30*(3 - 2*(-1)^n)*n^4 + 24*n^5): n in [1..50]]; // G. C. Greubel, Jul 05 2018
-
a = {}; r = 4; s = 3; Do[k = 0; Do[k = k + (Sin[Pi m/2]^2) m^r + (Cos[Pi m/2]^2) m^s, {m, 1, n}]; AppendTo[a, k], {n, 1, 100}]; a (* Artur Jasinski *)
nxt[{n_,a_}]:={n+1,If[EvenQ[n],a+(n+1)^4,a+(n+1)^3]}; NestList[nxt,{1,1},40][[All,2]] (* or *) LinearRecurrence[{1,5,-5,-10,10,10,-10,-5,5,1,-1},{1,9,90,154,779,995,3396,3908,10469,11469,26110},40] (* Harvey P. Dale, Oct 05 2016 *)
Table[(1/240)*(15*(1 -(-1)^n) - 4*(1 - 15*(-1)^n)*n + 30*(1 + 3(-1)^n)*n^2 + 20*(5 - 3*(-1)^n)*n^3 + 30*(3 - 2*(-1)^n)*n^4 + 24*n^5), {n,1,50}] (* G. C. Greubel, Jul 05 2018 *)
-
for(n=1,50, print1((1/240)*(15*(1 -(-1)^n) - 4*(1 - 15*(-1)^n)*n + 30*(1 + 3(-1)^n)*n^2 + 20*(5 - 3*(-1)^n)*n^3 + 30*(3 - 2*(-1)^n)*n^4 + 24*n^5), ", ")) \\ G. C. Greubel, Jul 05 2018
A140161
a(1)=1, a(n) = a(n-1) + n^4 if n odd, a(n) = a(n-1) + n^5 if n is even.
Original entry on oeis.org
1, 33, 114, 1138, 1763, 9539, 11940, 44708, 51269, 151269, 165910, 414742, 443303, 981127, 1031752, 2080328, 2163849, 4053417, 4183738, 7383738, 7578219, 12731851, 13011692, 20974316, 21364941, 33246317, 33777758, 50988126
Offset: 1
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,6,-6,-15,15,20,-20,-15,15,6,-6, -1,1).
-
[(1/120)*(15*(-1 +(-1)^n) - 2*(1 -15*(-1)^n)*n - 5*(1 +15*(-1)^n)*n^2 + 20*(1 -3*(-1)^n)*n^3 + (55 + 45*(-1)^n)*n^4 + (42 +30*(-1)^n)*n^5 + 10*n^6): n in [1..50]]; // G. C. Greubel, Jul 05 2018
-
a = {}; r = 4; s = 5; Do[k = 0; Do[k = k + (Sin[Pi m/2]^2) m^r + (Cos[Pi m/2]^2) m^s, {m, 1, n}]; AppendTo[a, k], {n, 1, 100}]; a (* Artur Jasinski *)
next[{a_,b_}]:={a+1,If[OddQ[a+1],b+(a+1)^4,b+(a+1)^5]}; Transpose[ NestList[ next[#]&,{1,1},30]][[2]] (* Harvey P. Dale, Nov 23 2011 *)
Table[(1/120)*(15*(-1 +(-1)^n) - 2*(1 -15*(-1)^n)*n - 5*(1 +15*(-1)^n)*n^2 + 20*(1 -3*(-1)^n)*n^3 + (55 + 45*(-1)^n)*n^4 + (42 +30*(-1)^n)*n^5 + 10*n^6), {n,1,50}] (* G. C. Greubel, Jul 05 2018 *)
-
for(n=1, 50, print1((1/120)*(15*(-1 +(-1)^n) - 2*(1 -15*(-1)^n)*n - 5*(1 +15*(-1)^n)*n^2 + 20*(1 -3*(-1)^n)*n^3 + (55 + 45*(-1)^n)*n^4 + (42 +30*(-1)^n)*n^5 + 10*n^6), ", ")) \\ G. C. Greubel, Jul 05 2018
A140162
a(1)=1, a(n) = a(n-1) + n^5 if n odd, a(n) = a(n-1) + n^0 if n is even.
Original entry on oeis.org
1, 2, 245, 246, 3371, 3372, 20179, 20180, 79229, 79230, 240281, 240282, 611575, 611576, 1370951, 1370952, 2790809, 2790810, 5266909, 5266910, 9351011, 9351012, 15787355, 15787356, 25552981, 25552982, 39901889, 39901890, 60413039
Offset: 1
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1, 6, -6, -15, 15, 20, -20, -15, 15, 6, -6, -1, 1).
-
[(1/24)*(3*(-1 +(-1)^n) + 12*n + (-1 +15*(-1)^n)*n^2 + 5*(1 -3* (-1)^n)*n^4 - 6*(-1 +(-1)^n)*n^5 + 2*n^6): n in [1..50]]; // G. C. Greubel, Jul 05 2018
-
a = {}; r = 5; s = 0; Do[k = 0; Do[k = k + (Sin[Pi m/2]^2) m^r + (Cos[Pi m/2]^2) m^s, {m, 1, n}]; AppendTo[a, k], {n, 1, 100}]; a (* Artur Jasinski *)
LinearRecurrence[{1,6,-6,-15,15,20,-20,-15,15,6,-6,-1,1},{1,2,245,246, 3371,3372,20179,20180,79229,79230,240281,240282,611575},40] (* Harvey P. Dale, Apr 21 2011 *)
-
for(n=1,50, print1((1/24)*(3*(-1 +(-1)^n) + 12*n + (-1 +15*(-1)^n)*n^2 + 5*(1 -3* (-1)^n)*n^4 - 6*(-1 +(-1)^n)*n^5 + 2*n^6), ", ")) \\ G. C. Greubel, Jul 05 2018
A140163
a(1)=1, a(n) = a(n-1) + n^5 if n odd, a(n) = a(n-1) + n if n is even.
Original entry on oeis.org
1, 3, 246, 250, 3375, 3381, 20188, 20196, 79245, 79255, 240306, 240318, 611611, 611625, 1371000, 1371016, 2790873, 2790891, 5266990, 5267010, 9351111, 9351133, 15787476, 15787500, 25553125, 25553151, 39902058, 39902086, 60413235
Offset: 1
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,6,-6,-15,15,20,-20,-15,15,6,-6, -1,1).
-
[(1/24)*(n +n^2)*(6*(1 +(-1)^n) - (1-9*(-1)^n)*n + (1 -9*(-1)^n)*n^2 + (4 -6*(-1)^n)*n^3 + 2*n^4): n in [1..50]]; // G. C. Greubel, Jul 05 2018
-
a:=proc(n) option remember: if n=1 then 1 elif modp(n,2)<>0 then procname(n-1)+n^5 else procname(n-1)+n; fi: end; seq(a(n),n=1..30); # Muniru A Asiru, Jul 07 2018
-
Table[(1/24)*(n +n^2)*(6*(1 +(-1)^n) - (1-9*(-1)^n)*n + (1 -9*(-1)^n)*n^2 + (4 -6*(-1)^n)*n^3 + 2*n^4), {n, 1, 50}] (* or *) LinearRecurrence[{1, 6, -6, -15, 15, 20, -20, -15, 15, 6, -6, -1, 1}, {1, 3, 246, 250, 3375, 3381, 20188, 20196, 79245, 79255, 240306, 240318, 611611}, 60] (* G. C. Greubel, Jul 05 2018 *)
-
for(n=1,50, print1((1/24)*(n +n^2)*(6*(1 +(-1)^n) - (1-9*(-1)^n)*n + (1 -9*(-1)^n)*n^2 + (4 -6*(-1)^n)*n^3 + 2*n^4), ", ")) \\ G. C. Greubel, Jul 05 2018
A145218
a(n) is the self-convolution series of the sum of 5th powers of the first n natural numbers.
Original entry on oeis.org
1, 64, 1510, 17600, 130835, 713216, 3098604, 11320320, 36074325, 102925120, 268038706, 646519744, 1460878055, 3120396800, 6346379480, 12363588096, 23184837609, 42023883840, 73881649150, 126362703040, 210792998011, 343726413824, 548946959300, 860095808000
Offset: 1
a(3) = 1510 because 1(3^5)+(2^5)(2^5)+(3^5)1= 1510
- A. Umar, B. Yushau and B. M. Ghandi, (2006), "Patterns in convolution of two series", in Stewart, S. M., Olearski, J. E. and Thompson, D. (Eds), Proceedings of the Second Annual Conference for Middle East Teachers of Science, Mathematics and Computing (pp. 95-101). METSMaC: Abu Dhabi.
- A. Umar, B. Yushau and B. M. Ghandi, "Convolution of two series", Australian Senior Maths. Journal, 21(2) (2007), 6-11.
- T. D. Noe, Table of n, a(n) for n = 1..1000
- C. P. Neuman and D. I. Schonbach, Evaluation of sums of convolved powers using Bernoulli numbers, SIAM Rev. 19 (1977), no. 1, 90--99. MR0428678 (55 #1698). See Table 2. - _N. J. A. Sloane_, Mar 23 2014
- Index entries for linear recurrences with constant coefficients, signature (12,-66,220,-495,792,-924,792,-495,220,-66,12,-1).
-
[Binomial(n+2,3)*(n^8+8*n^7+29*n^6+62*n^5+86*n^4 +80*n^3+28*n^2-24*n+192)/462: n in [1..40]]; // Vincenzo Librandi, Mar 24 2014
-
f:=n->(n^11-22*n^5+231*n^3-210*n)/2772;
[seq(f(n),n=0..50)]; # N. J. A. Sloane, Mar 23 2014
-
CoefficientList[Series[(x^4 + 26 x^3 + 66 x^2 + 26 x + 1)^2/(x - 1)^12, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 24 2014 *)
A257450
a(n) = 541*(2^n - 1) - 5*n^4 - 30*n^3 - 130*n^2 - 375*n.
Original entry on oeis.org
1, 33, 277, 1335, 4771, 14193, 37417, 90795, 207871, 456693, 974437, 2036655, 4195771, 8558073, 17337697, 34964595, 70300471, 141070653, 282727837, 566179575, 1133243251, 2267556033, 4536394777, 9074315835, 18150434671, 36302985093, 72608437717, 145219736895
Offset: 1
This sequence provides the antidiagonal sums of the array:
1, 32, 243, 1024, 3125, 7776, ... A000584
1, 33, 276, 1300, 4425, 12201, ... A000539
1, 34, 310, 1610, 6035, 18236, ... A101092
1, 35, 345, 1955, 7990, 26226, ... A101099
1, 36, 381, 2336, 10326, 36552, ... A254644
1, 37, 418, 2754, 13080, 49632, ... A254682
...
See also A254682 (Example field).
-
[541*(2^n-1)-5*n^4-30*n^3-130*n^2-375*n: n in [1..30]]; // Vincenzo Librandi, Apr 24 2015
-
Table[541 (2^n - 1) - 5 n^4 - 30 n^3 - 130 n^2 - 375 n, {n, 30}]
LinearRecurrence[{7,-20,30,-25,11,-2},{1,33,277,1335,4771,14193},30] (* Harvey P. Dale, Dec 24 2018 *)
A140143
a(1)=1, a(n)=a(n-1)+n^0 if n odd, a(n)=a(n-1)+ n^5 if n is even.
Original entry on oeis.org
1, 33, 34, 1058, 1059, 8835, 8836, 41604, 41605, 141605, 141606, 390438, 390439, 928263, 928264, 1976840, 1976841, 3866409, 3866410, 7066410, 7066411, 12220043, 12220044, 20182668, 20182669, 32064045, 32064046
Offset: 1
-
a = {}; r = 0; s = 5; Do[k = 0; Do[k = k + (Sin[Pi m/2]^2) m^r + (Cos[Pi m/2]^2) m^s, {m, 1, n}]; AppendTo[a, k], {n, 1, 100}]; a (*Artur Jasinski*)
Comments