cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 68 results. Next

A140157 a(1)=1, a(n) = a(n-1) + n^4 if n odd, a(n) = a(n-1) + n^0 if n is even.

Original entry on oeis.org

1, 2, 83, 84, 709, 710, 3111, 3112, 9673, 9674, 24315, 24316, 52877, 52878, 103503, 103504, 187025, 187026, 317347, 317348, 511829, 511830, 791671, 791672, 1182297, 1182298, 1713739, 1713740, 2421021, 2421022, 3344543, 3344544, 4530465
Offset: 1

Views

Author

Artur Jasinski, May 12 2008

Keywords

Crossrefs

Programs

  • Magma
    [(1/60)*(15*(-1 + (-1)^n) + (29 +15*(-1)^n)*n + 10*(1 -3*(-1)^n)*n^3 + 15*(1 -(-1)^n)*n^4 + 6*n^5): n in [1..50]]; // G. C. Greubel, Jul 05 2018
  • Mathematica
    a = {}; r = 4; s = 0; Do[k = 0; Do[k = k + (Sin[Pi m/2]^2) m^r + (Cos[Pi m/2]^2) m^s, {m, 1, n}]; AppendTo[a, k], {n, 1, 100}]; a (* Artur Jasinski *)
    LinearRecurrence[{1,5,-5,-10,10,10,-10,-5,5,1,-1}, {1, 2, 83, 84, 709, 710, 3111, 3112, 9673, 9674, 24315}, 50] (* or *) Table[(1/60)*(15*(-1 + (-1)^n) + (29 +15*(-1)^n)*n + 10*(1 -3*(-1)^n)*n^3 + 15*(1 -(-1)^n)*n^4 + 6*n^5), {n,1,50}] (* G. C. Greubel, Jul 05 2018 *)
  • PARI
    for(n=1,50, print1((1/60)*(15*(-1 + (-1)^n) + (29 +15*(-1)^n)*n + 10*(1 -3*(-1)^n)*n^3 + 15*(1 -(-1)^n)*n^4 + 6*n^5), ", ")) \\ G. C. Greubel, Jul 05 2018
    

Formula

G.f.: x*(1 + x + 76*x^2 - 4*x^3 + 230*x^4 + 6*x^5 + 76*x^6 - 4*x^7 + x^8 + x^9)/((1+x)^5*(x-1)^6). - R. J. Mathar, Feb 22 2009

A140158 a(1)=1, a(n) = a(n-1) + n^4 if n odd, a(n) = a(n-1) + n^1 if n is even.

Original entry on oeis.org

1, 3, 84, 88, 713, 719, 3120, 3128, 9689, 9699, 24340, 24352, 52913, 52927, 103552, 103568, 187089, 187107, 317428, 317448, 511929, 511951, 791792, 791816, 1182441, 1182467, 1713908, 1713936, 2421217, 2421247, 3344768, 3344800, 4530721
Offset: 1

Views

Author

Artur Jasinski, May 12 2008

Keywords

Crossrefs

Programs

  • Magma
    [(1/120)*(15*(-1 +(-1)^n) + (28 + 60*(-1)^n)*n + 30*n^2 + 20*(1 - 3*(-1)^n)*n^3 + 30*(1 -(-1)^n)*n^4 + 12*n^5): n in [1..50]]; // G. C. Greubel, Jul 05 2018
  • Mathematica
    a = {}; r = 4; s = 1; Do[k = 0; Do[k = k + (Sin[Pi m/2]^2) m^r + (Cos[Pi m/2]^2) m^s, {m, 1, n}]; AppendTo[a, k], {n, 1, 100}]; a (* Artur Jasinski *)
    LinearRecurrence[{1,5,-5,-10,10,10,-10,-5,5,1,-1}, {1, 3, 84, 88, 713, 719, 3120, 3128, 9689, 9699, 24340}, 50] (* or *) Table[(1/120)*(15*(-1 +(-1)^n) + (28 + 60*(-1)^n)*n + 30*n^2 + 20*(1 - 3*(-1)^n)*n^3 + 30*(1 -(-1)^n)*n^4 + 12*n^5), {n,1,50}] (* G. C. Greubel, Jul 05 2018 *)
    nxt[{n_,a_}]:={n+1,If[EvenQ[n],a+(n+1)^4,a+n+1]}; NestList[nxt,{1,1},40][[;;,2]] (* Harvey P. Dale, Dec 28 2024 *)
  • PARI
    for(n=1,50, print1((1/120)*(15*(-1 +(-1)^n) + (28 + 60*(-1)^n)*n + 30*n^2 + 20*(1 - 3*(-1)^n)*n^3 + 30*(1 -(-1)^n)*n^4 + 12*n^5), ", ")) \\ G. C. Greubel, Jul 05 2018
    

Formula

G.f.: x*(1 + 2*x + 76*x^2 - 6*x^3 + 230*x^4 + 6*x^5 + 76*x^6 - 2*x^7 + x^8)/((1+x)^5*(x-1)^6). - R. J. Mathar, Feb 22 2009

A140159 a(1)=1, a(n) = a(n-1) + n^4 if n odd, a(n) = a(n-1) + n^2 if n is even.

Original entry on oeis.org

1, 5, 86, 102, 727, 763, 3164, 3228, 9789, 9889, 24530, 24674, 53235, 53431, 104056, 104312, 187833, 188157, 318478, 318878, 513359, 513843, 793684, 794260, 1184885, 1185561, 1717002, 1717786, 2425067, 2425967, 3349488, 3350512, 4536433
Offset: 1

Views

Author

Artur Jasinski, May 12 2008

Keywords

Crossrefs

Programs

  • Magma
    [(1/60)*(n +n^2)* (4 + 30*(-1)^n + (11 -15*(-1)^n)*n + (9 -15*(-1)^n)*n^2 + 6*n^3): n in [1..50]]; // G. C. Greubel, Jul 05 2018
  • Mathematica
    a = {}; r = 4; s = 2; Do[k = 0; Do[k = k + (Sin[Pi m/2]^2) m^r + (Cos[Pi m/2]^2) m^s, {m, 1, n}]; AppendTo[a, k], {n, 1, 100}]; a (*Artur Jasinski*)
    nxt[{n_,a_}]:={n+1,If[EvenQ[n],a+(n+1)^4,a+(n+1)^2]}; NestList[nxt, {1, 1}, 40][[All, 2]] (* Harvey P. Dale, Sep 21 2016 *)
    LinearRecurrence[{1,5,-5,-10,10,10,-10,-5,5,1,-1}, {1, 5, 86, 102, 727, 763, 3164, 3228, 9789, 9889, 24530}, 50] (* or *) Table[(1/60)*(n +n^2)* (4 + 30*(-1)^n + (11 -15*(-1)^n)*n + (9 -15*(-1)^n)*n^2 + 6*n^3), {n,1, 50}] (* G. C. Greubel, Jul 05 2018 *)
  • PARI
    for(n=1,50, print1((1/60)*(n +n^2)* (4 + 30*(-1)^n + (11 -15*(-1)^n)*n + (9 -15*(-1)^n)*n^2 + 6*n^3), ", ")) \\ G. C. Greubel, Jul 05 2018
    

Formula

G.f.: x*(1+4*x+76*x^2-4*x^3+230*x^4-4*x^5+76*x^6+4*x^7+x^8)/((1+x)^5*(x-1)^6). - R. J. Mathar, Feb 22 2009

A140160 a(1)=1, a(n) = a(n-1) + n^4 if n odd, a(n) = a(n-1) + n^3 if n is even.

Original entry on oeis.org

1, 9, 90, 154, 779, 995, 3396, 3908, 10469, 11469, 26110, 27838, 56399, 59143, 109768, 113864, 197385, 203217, 333538, 341538, 536019, 546667, 826508, 840332, 1230957, 1248533, 1779974, 1801926, 2509207, 2536207, 3459728, 3492496
Offset: 1

Views

Author

Artur Jasinski, May 12 2008

Keywords

Crossrefs

Programs

  • Magma
    [(1/240)*(15*(1 -(-1)^n) - 4*(1 - 15*(-1)^n)*n + 30*(1 + 3(-1)^n)*n^2 + 20*(5 - 3*(-1)^n)*n^3 + 30*(3 - 2*(-1)^n)*n^4 + 24*n^5): n in [1..50]]; // G. C. Greubel, Jul 05 2018
  • Mathematica
    a = {}; r = 4; s = 3; Do[k = 0; Do[k = k + (Sin[Pi m/2]^2) m^r + (Cos[Pi m/2]^2) m^s, {m, 1, n}]; AppendTo[a, k], {n, 1, 100}]; a (* Artur Jasinski *)
    nxt[{n_,a_}]:={n+1,If[EvenQ[n],a+(n+1)^4,a+(n+1)^3]}; NestList[nxt,{1,1},40][[All,2]] (* or *) LinearRecurrence[{1,5,-5,-10,10,10,-10,-5,5,1,-1},{1,9,90,154,779,995,3396,3908,10469,11469,26110},40] (* Harvey P. Dale, Oct 05 2016 *)
    Table[(1/240)*(15*(1 -(-1)^n) - 4*(1 - 15*(-1)^n)*n + 30*(1 + 3(-1)^n)*n^2 + 20*(5 - 3*(-1)^n)*n^3 + 30*(3 - 2*(-1)^n)*n^4 + 24*n^5), {n,1,50}] (* G. C. Greubel, Jul 05 2018 *)
  • PARI
    for(n=1,50, print1((1/240)*(15*(1 -(-1)^n) - 4*(1 - 15*(-1)^n)*n + 30*(1 + 3(-1)^n)*n^2 + 20*(5 - 3*(-1)^n)*n^3 + 30*(3 - 2*(-1)^n)*n^4 + 24*n^5), ", ")) \\ G. C. Greubel, Jul 05 2018
    

Formula

G.f.: x*(1 + 8*x + 76*x^2 + 24*x^3 + 230*x^4 - 24*x^5 + 76*x^6 - 8*x^7 + x^8)/((1+x)^5*(x-1)^6). - R. J. Mathar, Feb 22 2009

A140161 a(1)=1, a(n) = a(n-1) + n^4 if n odd, a(n) = a(n-1) + n^5 if n is even.

Original entry on oeis.org

1, 33, 114, 1138, 1763, 9539, 11940, 44708, 51269, 151269, 165910, 414742, 443303, 981127, 1031752, 2080328, 2163849, 4053417, 4183738, 7383738, 7578219, 12731851, 13011692, 20974316, 21364941, 33246317, 33777758, 50988126
Offset: 1

Views

Author

Artur Jasinski, May 12 2008

Keywords

Crossrefs

Programs

  • Magma
    [(1/120)*(15*(-1 +(-1)^n) - 2*(1 -15*(-1)^n)*n - 5*(1 +15*(-1)^n)*n^2 + 20*(1 -3*(-1)^n)*n^3 + (55 + 45*(-1)^n)*n^4 + (42 +30*(-1)^n)*n^5 + 10*n^6): n in [1..50]]; // G. C. Greubel, Jul 05 2018
  • Mathematica
    a = {}; r = 4; s = 5; Do[k = 0; Do[k = k + (Sin[Pi m/2]^2) m^r + (Cos[Pi m/2]^2) m^s, {m, 1, n}]; AppendTo[a, k], {n, 1, 100}]; a (* Artur Jasinski *)
    next[{a_,b_}]:={a+1,If[OddQ[a+1],b+(a+1)^4,b+(a+1)^5]}; Transpose[ NestList[ next[#]&,{1,1},30]][[2]] (* Harvey P. Dale, Nov 23 2011 *)
    Table[(1/120)*(15*(-1 +(-1)^n) - 2*(1 -15*(-1)^n)*n - 5*(1 +15*(-1)^n)*n^2 + 20*(1 -3*(-1)^n)*n^3 + (55 + 45*(-1)^n)*n^4 + (42 +30*(-1)^n)*n^5 + 10*n^6), {n,1,50}] (* G. C. Greubel, Jul 05 2018 *)
  • PARI
    for(n=1, 50, print1((1/120)*(15*(-1 +(-1)^n) - 2*(1 -15*(-1)^n)*n - 5*(1 +15*(-1)^n)*n^2 + 20*(1 -3*(-1)^n)*n^3 + (55 + 45*(-1)^n)*n^4 + (42 +30*(-1)^n)*n^5 + 10*n^6), ", ")) \\ G. C. Greubel, Jul 05 2018
    

Formula

G.f.: x*(-1 - 32*x - 75*x^2 - 832*x^3 - 154*x^4 - 2112*x^5 + 154*x^6 - 832*x^7 + 75*x^8 - 32*x^9 + x^10)/((1+x)^6*(x-1)^7). - R. J. Mathar, Feb 22 2009

A140162 a(1)=1, a(n) = a(n-1) + n^5 if n odd, a(n) = a(n-1) + n^0 if n is even.

Original entry on oeis.org

1, 2, 245, 246, 3371, 3372, 20179, 20180, 79229, 79230, 240281, 240282, 611575, 611576, 1370951, 1370952, 2790809, 2790810, 5266909, 5266910, 9351011, 9351012, 15787355, 15787356, 25552981, 25552982, 39901889, 39901890, 60413039
Offset: 1

Views

Author

Artur Jasinski, May 12 2008

Keywords

Crossrefs

Programs

  • Magma
    [(1/24)*(3*(-1 +(-1)^n) + 12*n + (-1 +15*(-1)^n)*n^2 + 5*(1 -3* (-1)^n)*n^4 - 6*(-1 +(-1)^n)*n^5 + 2*n^6): n in [1..50]]; // G. C. Greubel, Jul 05 2018
  • Mathematica
    a = {}; r = 5; s = 0; Do[k = 0; Do[k = k + (Sin[Pi m/2]^2) m^r + (Cos[Pi m/2]^2) m^s, {m, 1, n}]; AppendTo[a, k], {n, 1, 100}]; a (* Artur Jasinski *)
    LinearRecurrence[{1,6,-6,-15,15,20,-20,-15,15,6,-6,-1,1},{1,2,245,246, 3371,3372,20179,20180,79229,79230,240281,240282,611575},40]  (* Harvey P. Dale, Apr 21 2011 *)
  • PARI
    for(n=1,50, print1((1/24)*(3*(-1 +(-1)^n) + 12*n + (-1 +15*(-1)^n)*n^2 + 5*(1 -3* (-1)^n)*n^4 - 6*(-1 +(-1)^n)*n^5 + 2*n^6), ", ")) \\ G. C. Greubel, Jul 05 2018
    

Formula

G.f.: x*(-1 - x - 237*x^2 + 5*x^3 - 1682*x^4 - 10*x^5 - 1682*x^6 + 10*x^7 - 237*x^8 - 5*x^9 - x^10 + x^11)/((1+x)^6*(x-1)^7). - R. J. Mathar, Feb 22 2009

A140163 a(1)=1, a(n) = a(n-1) + n^5 if n odd, a(n) = a(n-1) + n if n is even.

Original entry on oeis.org

1, 3, 246, 250, 3375, 3381, 20188, 20196, 79245, 79255, 240306, 240318, 611611, 611625, 1371000, 1371016, 2790873, 2790891, 5266990, 5267010, 9351111, 9351133, 15787476, 15787500, 25553125, 25553151, 39902058, 39902086, 60413235
Offset: 1

Views

Author

Artur Jasinski, May 12 2008

Keywords

Crossrefs

Programs

  • Magma
    [(1/24)*(n +n^2)*(6*(1 +(-1)^n) - (1-9*(-1)^n)*n + (1 -9*(-1)^n)*n^2 + (4 -6*(-1)^n)*n^3 + 2*n^4): n in [1..50]]; // G. C. Greubel, Jul 05 2018
  • Maple
    a:=proc(n) option remember: if n=1 then 1 elif modp(n,2)<>0 then procname(n-1)+n^5 else procname(n-1)+n; fi: end; seq(a(n),n=1..30); # Muniru A Asiru, Jul 07 2018
  • Mathematica
    Table[(1/24)*(n +n^2)*(6*(1 +(-1)^n) - (1-9*(-1)^n)*n + (1 -9*(-1)^n)*n^2 + (4 -6*(-1)^n)*n^3 + 2*n^4), {n, 1, 50}] (* or *) LinearRecurrence[{1, 6, -6, -15, 15, 20, -20, -15, 15, 6, -6, -1, 1}, {1, 3, 246, 250, 3375, 3381, 20188, 20196, 79245, 79255, 240306, 240318, 611611}, 60] (* G. C. Greubel, Jul 05 2018 *)
  • PARI
    for(n=1,50, print1((1/24)*(n +n^2)*(6*(1 +(-1)^n) - (1-9*(-1)^n)*n + (1 -9*(-1)^n)*n^2 + (4 -6*(-1)^n)*n^3 + 2*n^4), ", ")) \\ G. C. Greubel, Jul 05 2018
    

Formula

G.f.: -x*(1 + 2*x + 237*x^2 - 8*x^3 + 1682*x^4 + 12*x^5 + 1682*x^6 - 8*x^7 + 237*x^8 + 2*x^9 + x^10)/((1+x)^6*(x-1)^7). - R. J. Mathar, Feb 22 2009
a(n) = (1/24)*(n + n^2)*(6*(1 + (-1)^n) - (1 - 9*(-1)^n)*n + (1 - 9*(-1)^n)*n^2 + (4 - 6*(-1)^n)*n^3 + 2*n^4). - G. C. Greubel, Jul 05 2018

A145218 a(n) is the self-convolution series of the sum of 5th powers of the first n natural numbers.

Original entry on oeis.org

1, 64, 1510, 17600, 130835, 713216, 3098604, 11320320, 36074325, 102925120, 268038706, 646519744, 1460878055, 3120396800, 6346379480, 12363588096, 23184837609, 42023883840, 73881649150, 126362703040, 210792998011, 343726413824, 548946959300, 860095808000
Offset: 1

Views

Author

Abdullahi Umar, Oct 05 2008

Keywords

Examples

			a(3) = 1510 because 1(3^5)+(2^5)(2^5)+(3^5)1= 1510
		

References

  • A. Umar, B. Yushau and B. M. Ghandi, (2006), "Patterns in convolution of two series", in Stewart, S. M., Olearski, J. E. and Thompson, D. (Eds), Proceedings of the Second Annual Conference for Middle East Teachers of Science, Mathematics and Computing (pp. 95-101). METSMaC: Abu Dhabi.
  • A. Umar, B. Yushau and B. M. Ghandi, "Convolution of two series", Australian Senior Maths. Journal, 21(2) (2007), 6-11.

Crossrefs

a(n)=Conv(A000539, A000539)

Programs

  • Magma
    [Binomial(n+2,3)*(n^8+8*n^7+29*n^6+62*n^5+86*n^4 +80*n^3+28*n^2-24*n+192)/462: n in [1..40]]; // Vincenzo Librandi, Mar 24 2014
  • Maple
    f:=n->(n^11-22*n^5+231*n^3-210*n)/2772;
    [seq(f(n),n=0..50)]; # N. J. A. Sloane, Mar 23 2014
  • Mathematica
    CoefficientList[Series[(x^4 + 26 x^3 + 66 x^2 + 26 x + 1)^2/(x - 1)^12, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 24 2014 *)

Formula

a(n) = C(n+2, 3)*(n^8 + 8*n^7 + 29*n^6 + 62*n^5 + 86*n^4 + 80*n^3 + 28*n^2 - 24*n + 192)/462.
G.f.: x*(x^4 + 26*x^3 + 66*x^2 + 26*x + 1)^2/(x-1)^12. [Colin Barker, Jul 08 2012]

A257450 a(n) = 541*(2^n - 1) - 5*n^4 - 30*n^3 - 130*n^2 - 375*n.

Original entry on oeis.org

1, 33, 277, 1335, 4771, 14193, 37417, 90795, 207871, 456693, 974437, 2036655, 4195771, 8558073, 17337697, 34964595, 70300471, 141070653, 282727837, 566179575, 1133243251, 2267556033, 4536394777, 9074315835, 18150434671, 36302985093, 72608437717, 145219736895
Offset: 1

Views

Author

Luciano Ancora, Apr 23 2015

Keywords

Comments

See the first comment of A257448.

Examples

			This sequence provides the antidiagonal sums of the array:
1, 32, 243, 1024,  3125,  7776, ...   A000584
1, 33, 276, 1300,  4425, 12201, ...   A000539
1, 34, 310, 1610,  6035, 18236, ...   A101092
1, 35, 345, 1955,  7990, 26226, ...   A101099
1, 36, 381, 2336, 10326, 36552, ...   A254644
1, 37, 418, 2754, 13080, 49632, ...   A254682
...
See also A254682 (Example field).
		

Crossrefs

Programs

  • Magma
    [541*(2^n-1)-5*n^4-30*n^3-130*n^2-375*n: n in [1..30]]; // Vincenzo Librandi, Apr 24 2015
  • Mathematica
    Table[541 (2^n - 1) - 5 n^4 - 30 n^3 - 130 n^2 - 375 n, {n, 30}]
    LinearRecurrence[{7,-20,30,-25,11,-2},{1,33,277,1335,4771,14193},30] (* Harvey P. Dale, Dec 24 2018 *)

Formula

G.f.: x*(1+26*x+66*x^2+26*x^3+x^4)/(-1+x)^5*(-1+2*x).
a(n) = 7*a(n-1) -20*a(n-2) +30*a(n-3) -25*a(n-4) +11*a(n-5) -2*a(n-6) for n>6.

A140143 a(1)=1, a(n)=a(n-1)+n^0 if n odd, a(n)=a(n-1)+ n^5 if n is even.

Original entry on oeis.org

1, 33, 34, 1058, 1059, 8835, 8836, 41604, 41605, 141605, 141606, 390438, 390439, 928263, 928264, 1976840, 1976841, 3866409, 3866410, 7066410, 7066411, 12220043, 12220044, 20182668, 20182669, 32064045, 32064046
Offset: 1

Views

Author

Artur Jasinski, May 12 2008, corrected May 17 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; r = 0; s = 5; Do[k = 0; Do[k = k + (Sin[Pi m/2]^2) m^r + (Cos[Pi m/2]^2) m^s, {m, 1, n}]; AppendTo[a, k], {n, 1, 100}]; a (*Artur Jasinski*)

Formula

a(n)=a(n-1)+6a(n-2)-6a(n-3)-15a(n-4)+15a(n-5)+20a(n-6)-20a(n-7)-15a(n-8)+15a(n-9)+6a(n-10)-6a(n-11)-a(n-12)+a(n-13). G.f.: x*(-1-32*x+5*x^2-832*x^3-10*x^4-2112*x^5+10*x^6-832*x^7-5*x^8-32*x^9+x^10 )/((1+x)^6*(x-1)^7). [From R. J. Mathar, Feb 22 2009]
Previous Showing 51-60 of 68 results. Next