cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 106 results. Next

A379310 Number of nonsquarefree prime indices of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Dec 27 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 39 are {2,6}, so a(39) = 0.
The prime indices of 70 are {1,3,4}, so a(70) = 1.
The prime indices of 98 are {1,4,4}, so a(98) = 2.
The prime indices of 294 are {1,2,4,4}, a(294) = 2.
The prime indices of 1911 are {2,4,4,6}, so a(1911) = 2.
The prime indices of 2548 are {1,1,4,4,6}, so a(2548) = 2.
		

Crossrefs

Positions of first appearances are A000420.
Positions of zero are A302478, counted by A073576 (strict A087188).
No squarefree parts: A379307, counted by A114374 (strict A256012).
One squarefree part: A379316, counted by A379308 (strict A379309).
A000040 lists the primes, differences A001223.
A005117 lists the squarefree numbers, differences A076259.
A008966 is the characteristic function for the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A061398 counts squarefree numbers between primes, zeros A068360.
A377038 gives k-th differences of squarefree numbers.
Other counts of prime indices:
- A330944 nonprime, see A000586, A000607, A076610, A330945.
- A379311 old prime, see A204389, A320629, A379312-A379315.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[prix[n],Not@*SquareFreeQ]],{n,100}]

Formula

Totally additive with a(prime(k)) = A107078(k) = 1 - A008966(k).

A379303 Number of strict integer partitions of n with a unique composite part.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 2, 3, 3, 6, 6, 8, 10, 10, 13, 15, 17, 20, 22, 24, 28, 31, 36, 40, 44, 50, 55, 62, 70, 75, 83, 89, 97, 108, 115, 128, 136, 146, 161, 172, 188, 203, 215, 233, 249, 269, 291, 309, 331, 353, 376, 405, 433, 459, 490, 518, 554, 592, 629, 670, 705
Offset: 0

Views

Author

Gus Wiseman, Dec 25 2024

Keywords

Examples

			The a(4) = 1 through a(11) = 8 partitions:
  (4)  (4,1)  (6)    (4,3)    (8)      (9)      (10)       (6,5)
              (4,2)  (6,1)    (6,2)    (5,4)    (8,2)      (7,4)
                     (4,2,1)  (4,3,1)  (6,3)    (9,1)      (8,3)
                                       (8,1)    (5,4,1)    (9,2)
                                       (4,3,2)  (6,3,1)    (10,1)
                                       (6,2,1)  (4,3,2,1)  (5,4,2)
                                                           (6,3,2)
                                                           (8,2,1)
		

Crossrefs

If no parts are composite we have A036497, non-strict A034891 (ranks A302540).
If all parts are composite we have A204389, non-strict A023895 (ranks A320629).
The non-strict version is A379302, ranks A379301 (positions of 1 in A379300).
For a unique prime we have A379305, non-strict A379304 (ranks A331915).
A000040 lists the prime numbers, differences A001223.
A000041 counts integer partitions, strict A000009.
A002808 lists the composite numbers, nonprimes A018252.
A066247 is the characteristic function for the composite numbers.
A377033 gives k-th differences of composite numbers, see A073445, A377034-A377037.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Count[#,_?CompositeQ]==1&]],{n,0,30}]

A379306 Number of squarefree prime indices of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 0, 3, 2, 2, 1, 3, 1, 1, 2, 4, 1, 3, 0, 3, 1, 2, 0, 4, 2, 2, 3, 2, 1, 3, 1, 5, 2, 2, 1, 4, 0, 1, 2, 4, 1, 2, 1, 3, 3, 1, 1, 5, 0, 3, 2, 3, 0, 4, 2, 3, 1, 2, 1, 4, 0, 2, 2, 6, 2, 3, 1, 3, 1, 2, 0, 5, 1, 1, 3, 2, 1, 3, 1, 5, 4, 2, 1, 3, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Dec 25 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 39 are {2,6}, so a(39) = 2.
The prime indices of 70 are {1,3,4}, so a(70) = 2.
The prime indices of 98 are {1,4,4}, so a(98) = 1.
The prime indices of 294 are {1,2,4,4}, a(294) = 2.
The prime indices of 1911 are {2,4,4,6}, so a(1911) = 2.
The prime indices of 2548 are {1,1,4,4,6}, so a(2548) = 3.
		

Crossrefs

Positions of first appearances are A000079.
Positions of zero are A379307, counted by A114374 (strict A256012).
Positions of one are A379316, counted by A379308 (strict A379309).
A000040 lists the primes, differences A001223.
A005117 lists the squarefree numbers, differences A076259.
A008966 is the characteristic function for the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A061398 counts squarefree numbers between primes, zeros A068360.
A377038 gives k-th differences of squarefree numbers.
Other counts of prime indices:
- A087436 postpositive, see A038550.
- A330944 nonprime, see A000586, A000607, A076610, A330945.
- A379310 nonsquarefree, see A302478.
- A379311 old prime, see A204389, A320629, A379312-A379315.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[prix[n],SquareFreeQ]],{n,100}]

Formula

Totally additive with a(prime(k)) = A008966(k).

A379317 Positive integers with a unique even prime index.

Original entry on oeis.org

3, 6, 7, 12, 13, 14, 15, 19, 24, 26, 28, 29, 30, 33, 35, 37, 38, 43, 48, 51, 52, 53, 56, 58, 60, 61, 65, 66, 69, 70, 71, 74, 75, 76, 77, 79, 86, 89, 93, 95, 96, 101, 102, 104, 106, 107, 112, 113, 116, 119, 120, 122, 123, 130, 131, 132, 138, 139, 140, 141, 142
Offset: 1

Views

Author

Gus Wiseman, Dec 29 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
   3: {2}
   6: {1,2}
   7: {4}
  12: {1,1,2}
  13: {6}
  14: {1,4}
  15: {2,3}
  19: {8}
  24: {1,1,1,2}
  26: {1,6}
  28: {1,1,4}
  29: {10}
  30: {1,2,3}
  33: {2,5}
  35: {3,4}
  37: {12}
  38: {1,8}
  43: {14}
  48: {1,1,1,1,2}
		

Crossrefs

Partitions of this type are counted by A038348 (strict A096911).
For all even parts we have A066207, counted by A035363 (strict A000700).
For no even parts we have A066208, counted by A000009 (strict A035457).
Positions of 1 in A257992.
A000040 lists the primes, differences A001223.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
Other counts of prime indices:
- A330944 nonprime, see A000586, A000607, A076610, A330945.
- A379311 old prime, see A204389, A320629, A379312-A379315.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Length[Select[prix[#],EvenQ]]==1&]

A045450 Number of partitions of n into a prime number of distinct prime parts.

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 0, 2, 1, 2, 2, 3, 0, 4, 2, 4, 3, 4, 2, 5, 3, 5, 3, 5, 3, 6, 5, 5, 5, 7, 5, 9, 5, 7, 8, 8, 6, 11, 8, 11, 9, 12, 10, 14, 11, 15, 12, 15, 13, 18, 17, 17, 16, 18, 18, 23, 20, 22, 23, 25, 23, 30, 26, 28, 29, 32, 32, 36, 34, 38, 38, 41, 41, 47, 45, 47, 48, 50, 54, 58, 57, 60, 63
Offset: 5

Views

Author

Vladeta Jovovic, Jul 21 2003

Keywords

Examples

			a(50) = 15 because there are 15 partitions of 50 into a prime number of distinct prime parts: 2+7+11+13+17 = 2+5+11+13+19 = 2+5+7+17+19 = 2+5+7+13+23 = 2+3+5+17+23 = 2+3+5+11+29 = 2+19+29 = 2+17+31 = 2+11+37 = 2+7+41 = 2+5+43 = 19+31 = 13+37 = 7+43 = 3+47.
		

Crossrefs

Cf. A000586.

Programs

  • Maple
    s:= proc(n) if n<1 then 0 else ithprime(n)+s(n-1) fi end:
    b:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(s(i) `if`(p>n, 0, x*b(n-p, i-1)))(ithprime(i)))))
        end:
    a:= n-> (p-> add(`if`(isprime(i), coeff(p, x, i), 0)
             , i=2..degree(p)))(b(n, numtheory[pi](n))):
    seq(a(n), n=5..100);  # Alois P. Heinz, Sep 18 2017
  • Mathematica
    partprim[n_] := Module[{sp, spq, sps},
    sp = Subsets[Prime[Range[PrimePi[n]]]];
    spq = Select[sp, PrimeQ@Length@# &];
    sps = Select[spq, n == Plus@@# &];
    sps // Length // Return];
    Table[partprim[n], {n, 5, 80}] (* Andres Cicuttin, Sep 17 2017 *)
    s[n_] := s[n] = If [n < 1, 0, Prime[n] + s[n - 1]];
    b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[s[i] < n, 0, b[n, i - 1] + Function[p, If[p > n, 0, x*b[n - p, i - 1]]][Prime[i]]]]];
    a[n_] := Function[p, Sum[If[PrimeQ[i], Coefficient[p, x, i], 0], {i, 2, Exponent[p, x]}]][b[n, PrimePi[n]]];
    Table[a[n], {n, 5, 100}] (* Jean-François Alcover, Jun 11 2021, after Alois P. Heinz *)
    Table[Count[IntegerPartitions[n],?(AllTrue[#,PrimeQ]&&Length[#]==Length[ Union[ #]] && PrimeQ[Length[#]]&)],{n,5,90}] (* _Harvey P. Dale, May 17 2024 *)

A112020 Number of partitions of n into distinct semiprimes.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 2, 0, 0, 1, 2, 2, 1, 0, 1, 3, 2, 2, 1, 2, 3, 5, 2, 2, 3, 5, 4, 5, 3, 4, 6, 9, 6, 5, 6, 10, 10, 9, 7, 9, 12, 14, 12, 11, 14, 18, 17, 16, 16, 19, 21, 24, 21, 23, 26, 29, 30, 32, 31, 33, 39, 40, 39, 41, 45, 49, 54, 53, 54, 59, 68, 66, 68, 70, 78, 82, 88, 86, 93, 101
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 26 2005

Keywords

Examples

			For n=4 one partition: {2*2}.
For n=6 one partition: {2*3}.
For n=10 two partitions: {2*2+2*3,2*5}.
		

Crossrefs

Programs

  • Maple
    h:= proc(n) option remember; `if`(n=0, 0,
         `if`(numtheory[bigomega](n)=2, n, h(n-1)))
        end:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n-i, h(min(n-i, i-1)))+b(n, h(i-1))))
        end:
    a:= n-> b(n, h(n)):
    seq(a(n), n=0..100);  # Alois P. Heinz, Mar 19 2024
  • Mathematica
    nmax = 100;
    CoefficientList[Series[Product[1+x^(Prime[j] Prime[k]), {j, 1, nmax}, {k, j, nmax}], {x, 0, nmax}], x] (* Jean-François Alcover, Nov 10 2021 *)

A199017 Number of partitions of n into distinct terms of (1,2)-Ulam sequence, cf. A002858.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 5, 5, 6, 7, 7, 8, 9, 10, 11, 12, 13, 14, 14, 16, 16, 17, 19, 20, 22, 23, 25, 26, 27, 29, 30, 31, 34, 35, 38, 40, 41, 45, 45, 48, 51, 52, 57, 60, 62, 66, 68, 71, 75, 78, 83, 86, 93, 97, 100, 107, 109, 115, 120, 124, 132, 138
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 03 2011

Keywords

Examples

			The first terms of A002858 are 1, 2, 3, 4, 6, 8, 11, 13, 16, 18, ...
a(10) = #{8+2, 6+4, 6+3+1, 4+3+2+1} = 4;
a(11) = #{11, 8+3, 8+2+1, 6+4+1, 6+3+2} = 5;
a(12) = #{11+1, 8+4, 8+3+1, 6+4+2, 6+3+2+1} = 5.
		

Crossrefs

Programs

  • Haskell
    a199017 = p a002858_list where
       p _  0 = 1
       p (u:us) m | m < u = 0
                  | otherwise = p us (m - u) + p us m

A199119 Number of partitions of n into distinct terms of (1,3)-Ulam sequence, cf. A002859.

Original entry on oeis.org

1, 1, 0, 1, 2, 2, 2, 2, 3, 4, 4, 4, 5, 6, 6, 7, 7, 8, 10, 9, 9, 12, 13, 13, 13, 14, 17, 18, 18, 19, 21, 23, 25, 26, 27, 30, 33, 33, 36, 40, 42, 43, 45, 51, 55, 55, 57, 62, 67, 71, 72, 76, 82, 87, 91, 95, 100, 107, 112, 116, 124, 132, 137, 143, 151, 159, 170
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 03 2011

Keywords

Examples

			The first terms of A002859 are 1, 3, 4, 5, 6, 8, 10, 12, 17, 21, ...
a(10) = #{10, 6+4, 6+3+1, 5+4+1} = 4;
a(11) = #{10+1, 8+3, 6+5, 6+4+1} = 4;
a(12) = #{12, 8+4, 8+3+1, 6+5+1, 5+4+3} = 5.
		

Crossrefs

Programs

  • Haskell
    a199119 = p a002859_list where
       p _  0 = 1
       p (u:us) m | m < u = 0
                  | otherwise = p us (m - u) + p us m

A199121 Number of partitions of n into distinct terms of (1,4)-Ulam sequence, cf. A003666.

Original entry on oeis.org

1, 1, 0, 0, 1, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 5, 6, 6, 7, 8, 7, 8, 10, 11, 11, 12, 14, 14, 15, 17, 18, 20, 21, 22, 24, 25, 27, 30, 31, 32, 35, 37, 39, 41, 44, 45, 48, 52, 53, 56, 60, 62, 66, 69, 72, 76, 81, 86, 89, 92, 96, 103, 109, 113, 117, 123, 127, 134
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 03 2011

Keywords

Examples

			The first terms of A003666 are 1, 4, 5, 6, 7, 8, 10, 16, 18, 19, ...
a(12) = #{8+4, 7+5, 7+4+1, 6+5+1} = 4;
a(13) = #{8+5, 8+4+1, 7+6, 7+5+1} = 4;
a(14) = #{10+4, 8+6, 8+5+1, 7+6+1} = 4;
a(15) = #{10+5, 10+4+1, 8+7, 8+6+1, 6+5+4} = 5;
a(16) = #{16, 10+6, 10+5+1, 8+7+1, 7+5+4, 6+5+4+1} = 6.
		

Crossrefs

Programs

  • Haskell
    a199121 = p a003666_list where
       p _  0 = 1
       p (u:us) m | m < u =
                  | otherwise = p us (m - u) + p us m

A199123 Number of partitions of n into distinct terms of (2,3)-Ulam sequence, cf. A001857.

Original entry on oeis.org

1, 0, 1, 1, 0, 2, 0, 2, 2, 2, 3, 2, 3, 3, 4, 4, 5, 5, 6, 6, 6, 8, 8, 9, 11, 10, 12, 14, 12, 17, 16, 17, 22, 19, 24, 25, 25, 30, 30, 33, 37, 37, 42, 45, 46, 52, 54, 57, 64, 66, 69, 79, 76, 87, 93, 91, 109, 105, 115, 126, 123, 140, 144, 151, 166, 169, 180, 193
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 03 2011

Keywords

Examples

			The first terms of A001857 are 2, 3, 5, 7, 8, 9, 13, 14, 18, 19, 24, ...
a(20) = #{18+2, 13+7, 13+5+2, 9+8+3, 8+7+5, 8+7+3+2} = 6;
a(21) = #{19+2, 18+3, 14+7, 14+5+2, 13+8, 13+5+3, 9+7+5, 9+7+3+2} = 8.
		

Crossrefs

Programs

  • Haskell
    a199123 = p a001857_list where
       p _  0 = 1
       p (u:us) m | m < u = 0
                  | otherwise = p us (m - u) + p us m
Previous Showing 31-40 of 106 results. Next