cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-48 of 48 results.

A175716 The total number of elements(ordered pairs) in all equivalence relations on {1,2,...,n}.

Original entry on oeis.org

0, 1, 6, 27, 120, 560, 2778, 14665, 82232, 488403, 3062980, 20221520, 140134404, 1016698813, 7703878042, 60833235795, 499592325152, 4259301450652, 37634032670886, 344092369602461, 3250925202629100
Offset: 0

Views

Author

Geoffrey Critzer, Dec 04 2010

Keywords

Examples

			a(2) = 6 because the equivalence relations on {1,2}: {(1,1), (2,2)}, {(1,1), (2,2), (1,2), (2,1)} contain 6 ordered pairs.
		

Crossrefs

Programs

  • Mathematica
    f[list_] := Length[list]^2; Table[Total[Map[f, Level[SetParttions[n], {2}]]], {n, 0, 12}] (* or *)
    Range[0,20]! CoefficientList[Series[(x + x^2)Exp[x] * Exp[Exp[x] - 1], {x, 0, 20}], x]

Formula

a(n) = n*A124427(n). - Joerg Arndt, Dec 04 2010
E.g.f.: (x+x^2) * exp(x) * exp(exp(x)-1).

A320993 Number of connected self-dual marked graphs on 2n nodes.

Original entry on oeis.org

1, 1, 6, 81, 2796, 285205, 96322648, 112087066485, 458071927263177, 6665704296474517580, 349377209492189224235030, 66602723163954143548104716149, 46557323273646194397454383970079368, 120168498151800396724425771086539073209571, 1152049915423012273792614840558950392103437052846
Offset: 0

Views

Author

N. J. A. Sloane, Oct 26 2018

Keywords

Crossrefs

Cf. A000666 (not necessarily connected marked graphs), A000595 (self dual on 2n nodes), A054921 (connected marked graphs).

Programs

Formula

a(2*n-1) = b(2*n-1) - A054921(2*n-1)/2, a(2*n) = b(2*n) - (A054921(2*n)-a(n))/2 where b is the Inverse Euler transform of A000595. - Andrew Howroyd, Jan 27 2020

Extensions

a(0)=1 prepended and terms a(7) and beyond from Andrew Howroyd, Jan 26 2020

A326253 Number of sequences of distinct ordered pairs of positive integers up to n.

Original entry on oeis.org

1, 2, 65, 986410, 56874039553217, 42163840398198058854693626, 1011182700521015817607065606491025592595137, 1653481537585545171449931620186035466059689728986775126016505970
Offset: 0

Views

Author

Gus Wiseman, Jun 21 2019

Keywords

Examples

			The a(2) = 65 sequences:
  ()  (11)  (11,12)  (11,12,21)  (11,12,21,22)
      (12)  (11,21)  (11,12,22)  (11,12,22,21)
      (21)  (11,22)  (11,21,12)  (11,21,12,22)
      (22)  (12,11)  (11,21,22)  (11,21,22,12)
            (12,21)  (11,22,12)  (11,22,12,21)
            (12,22)  (11,22,21)  (11,22,21,12)
            (21,11)  (12,11,21)  (12,11,21,22)
            (21,12)  (12,11,22)  (12,11,22,21)
            (21,22)  (12,21,11)  (12,21,11,22)
            (22,11)  (12,21,22)  (12,21,22,11)
            (22,12)  (12,22,11)  (12,22,11,21)
            (22,21)  (12,22,21)  (12,22,21,11)
                     (21,11,12)  (21,11,12,22)
                     (21,11,22)  (21,11,22,12)
                     (21,12,11)  (21,12,11,22)
                     (21,12,22)  (21,12,22,11)
                     (21,22,11)  (21,22,11,12)
                     (21,22,12)  (21,22,12,11)
                     (22,11,12)  (22,11,12,21)
                     (22,11,21)  (22,11,21,12)
                     (22,12,11)  (22,12,11,21)
                     (22,12,21)  (22,12,21,11)
                     (22,21,11)  (22,21,11,12)
                     (22,21,12)  (22,21,12,11)
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[k!*Binomial[n^2,k],{k,0,n^2}],{n,0,4}]

Formula

a(n) = A000522(n^2).

A381089 Number of binary relations on n unlabeled points without isolated points.

Original entry on oeis.org

1, 0, 7, 86, 2846, 285984, 96348100, 112089342912, 458072631172864, 6665705090236713408, 349377212708652631367712, 66602723210653815331014240512, 46557323276092409455163109412993536, 120168498152266645852126063743794842575872
Offset: 0

Views

Author

Peter Dolland, Feb 13 2025

Keywords

Comments

Equivalently, the number of simple digraphs on n unlabeled two-colored nodes where each node is connected to at least one other node.

Examples

			For n = 2 there are 10 (=A000595(2)) - 3 (=number of relations with isolated points) = 7 = a(2) relations.
For n = 3 there are 104 (=A000595(3)) - 2 * 7 (=number of relations with exactly one isolated point) - 3 * 0 (=number of relations with exactly two isolated points) - 4 * 1 (=number of relations with exactly three isolated points) = 86 = a(3) relations.
		

Crossrefs

Cf. A000595.

Formula

a(n) = A000595(n) - Sum_{i=1..n} (i+1)*a(n-i).

A384105 Triangle read by rows: T(n,k) is the number of binary relations on a set of n objects, exactly k of which are self referencing, 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 3, 4, 3, 16, 36, 36, 16, 218, 752, 1104, 752, 218, 9608, 45960, 90416, 90416, 45960, 9608, 1540944, 9133760, 22692704, 30194176, 22692704, 9133760, 1540944, 882033440, 6154473664, 18425858880, 30679088480, 30679088480, 18425858880, 6154473664, 882033440
Offset: 0

Views

Author

Peter Dolland, May 19 2025

Keywords

Comments

Also the number of essentially different simple digraphs on a node set A of size n with a distinguished subset B of size k, where elements are indistinguishable within B and within A \ B.

Examples

			Triangle starts:
            1
            1,              1
            3,              4,              3
           16,             36,             36,              16
          218,            752,           1104,             752,             218
         9608,          45960,          90416,           90416,           45960, ...
      1540944,        9133760,       22692704,        30194176,        22692704, ...
    882033440,     6154473664,    18425858880,     30679088480,     30679088480, ...
1793359192848, 14334221970688, 50138592081152, 100240050239744, 125284653092864, ...
...
		

Crossrefs

Cf. A000273 (edge cases), A000595 (row sums), A353996, A328874, A383617.

Formula

T(n,k) = T(n,n-k).
T(n,0) = T(n,n) = A000273(n).
T(n,1) = T(n,n-1) = A353996(n+1) = A329874(n,4).
Sum_{k=0..n} T(n,k) = A000595(n).

A030243 Number of nonisomorphic relations with a nontrivial symmetry.

Original entry on oeis.org

0, 0, 4, 34, 580, 23702
Offset: 0

Views

Author

Keywords

Crossrefs

A174137 Partial sums of A006905.

Original entry on oeis.org

1, 3, 16, 187, 4181, 158484, 9573673, 887796203, 123095499826, 25013843421773, 7332464142932061, 3060854010476035118, 1800064413234246359355, 1477862758280253372432667, 1680717420907850482529235664
Offset: 0

Views

Author

Jonathan Vos Post, Mar 09 2010

Keywords

Comments

Partial sums of number of transitive relations on n labeled nodes. After 3, none of the values shown is prime.

Crossrefs

Formula

a(n) = Sum_{i=0..n} A006905(i).

A382018 Number of orbits under the action of the permutation group S(n) on the nonsingular n X n matrices over GF(2).

Original entry on oeis.org

1, 1, 4, 33, 908, 85411, 28227922, 32597166327
Offset: 0

Views

Author

Keywords

Comments

The action is defined by f.M(i,j)=M(f(i),f(j)).
Equivalently, the number of digraphs on n unlabeled nodes with loops allowed but no more than one arc with the same start and end node with adjacency matrices invertible over GF(2).

Examples

			For n = 2, representatives of the four different orbits are [[1, 0], [0, 1]], [[1, 1], [0, 1]], [[0, 1], [1, 1]], and [[0, 1], [1, 0]].
		

Crossrefs

Previous Showing 41-48 of 48 results.