cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 640 results. Next

A330820 Numbers of the form (M_p^2-1)^2, where M_p is a Mersenne prime, A000668. Also the second element of the power-spectral basis of A330817.

Original entry on oeis.org

64, 2304, 921600, 260112384, 4501400872550400, 295138898048817561600, 75557287266261531623424
Offset: 1

Views

Author

Walter Kehowski, Jan 06 2020

Keywords

Comments

The first element of the power-spectral basis of A330817 is A330819.

Examples

			If n=1, a(1)=(3^2-1)^2=64.
		

Crossrefs

Programs

  • Maple
    A330820:=[]:
    for www to 1 do
    for i from 1 to 31 do
    #ithprime(31)=127
      p:=ithprime(i);
      q:=2^p-1;
    if isprime(q) then x:=(q^2-1)^2; A330820:=[op(A330820),x] fi;
    od;
    od;
    A330820;
  • Mathematica
    Array[((2^MersennePrimeExponent[#] - 1)^2 - 1)^2 &, 10] (* Amiram Eldar, Jan 07 2020 *)

Formula

a(n) = (A000668(n)^2-1)^2.

A139257 Twice Mersenne primes A000668(n).

Original entry on oeis.org

6, 14, 62, 254, 16382, 262142, 1048574, 4294967294, 4611686018427387902, 1237940039285380274899124222, 324518553658426726783156020576254, 340282366920938463463374607431768211454
Offset: 1

Views

Author

Omar E. Pol, Apr 23 2008

Keywords

Comments

Radicals of even perfect numbers. - Charles R Greathouse IV, Feb 01 2013

Crossrefs

Programs

  • Mathematica
    2*(2^MersennePrimeExponent[Range[15]]-1) (* Harvey P. Dale, Jan 05 2020 *)
  • PARI
    apply(p->2*(2^p-1),select(p->ispseudoprime(2^p-1),primes(40))) \\ Charles R Greathouse IV, Feb 01 2013

Formula

a(n) = 2*A000668(n).
a(n) = A000918(1 + A000043(n)) = A095121(A000043(n)). - Omar E. Pol, Jun 07 2012

Extensions

Corrected and extended by Joerg Arndt, Jun 07 2012.

A275977 Decimal expansion of 2^9689 - 1, the 21st Mersenne prime A000668(21).

Original entry on oeis.org

4, 7, 8, 2, 2, 0, 2, 7, 8, 8, 0, 5, 4, 6, 1, 2, 0, 2, 9, 5, 2, 8, 3, 9, 2, 9, 8, 6, 6, 0, 0, 0, 5, 9, 0, 9, 7, 4, 1, 4, 9, 7, 1, 7, 2, 4, 0, 2, 2, 3, 6, 5, 0, 0, 8, 5, 1, 3, 3, 4, 5, 1, 0, 9, 9, 1, 8, 3, 7, 8, 9, 5, 0, 9, 4, 2, 6, 6, 2, 9, 7, 0, 2, 7, 8, 9, 2, 7, 6, 8, 6, 1, 1, 2, 7, 0, 7, 8, 9, 4, 5, 8, 6, 8, 2
Offset: 2917

Views

Author

Arkadiusz Wesolowski, Aug 15 2016

Keywords

Examples

			47822027880546120295283929866000590974149717240223650085133451099183789...
		

Crossrefs

Programs

  • Magma
    Reverse(Intseq(2^9689-1))[1..105];
    
  • Mathematica
    First@RealDigits@N[2^9689 - 1, 100] (* G. C. Greubel, Aug 15 2016 *)
    RealDigits[2^MersennePrimeExponent[21]-1,10,120][[1]] (* Harvey P. Dale, Aug 14 2025 *)
  • PARI
    eval(Vec(Str(2^9689-1)))[1..105]

Formula

2^A000043(21) - 1.

A275979 Decimal expansion of 2^9941 - 1, the 22nd Mersenne prime A000668(22).

Original entry on oeis.org

3, 4, 6, 0, 8, 8, 2, 8, 2, 4, 9, 0, 8, 5, 1, 2, 1, 5, 2, 4, 2, 9, 6, 0, 3, 9, 5, 7, 6, 7, 4, 1, 3, 3, 1, 6, 7, 2, 2, 6, 2, 8, 6, 6, 8, 9, 0, 0, 2, 3, 8, 5, 4, 7, 7, 9, 0, 4, 8, 9, 2, 8, 3, 4, 4, 5, 0, 0, 6, 2, 2, 0, 8, 0, 9, 8, 3, 4, 1, 1, 4, 4, 6, 4, 3, 6, 4, 3, 7, 5, 5, 4, 4, 1, 5, 3, 7, 0, 7, 5, 3, 3, 6, 6, 4
Offset: 2993

Views

Author

Arkadiusz Wesolowski, Aug 15 2016

Keywords

Examples

			34608828249085121524296039576741331672262866890023854779048928344500622...
		

Crossrefs

Programs

  • Magma
    Reverse(Intseq(2^9941-1))[1..105];
    
  • Mathematica
    First@RealDigits@N[2^9941 - 1, 100] (* G. C. Greubel, Aug 15 2016 *)
  • PARI
    eval(Vec(Str(2^9941-1)))[1..105]

Formula

2^A000043(22) - 1.

A275980 Decimal expansion of 2^11213 - 1, the 23rd Mersenne prime A000668(23).

Original entry on oeis.org

2, 8, 1, 4, 1, 1, 2, 0, 1, 3, 6, 9, 7, 3, 7, 3, 1, 3, 3, 3, 9, 3, 1, 5, 2, 9, 7, 5, 8, 4, 2, 5, 8, 4, 1, 9, 1, 8, 1, 8, 6, 6, 2, 3, 8, 2, 0, 1, 3, 6, 0, 0, 7, 8, 7, 8, 9, 2, 4, 1, 9, 3, 4, 9, 3, 4, 5, 5, 1, 5, 1, 7, 6, 6, 8, 2, 2, 7, 6, 3, 1, 3, 8, 1, 0, 7, 1, 5, 0, 9, 4, 7, 4, 5, 6, 3, 3, 2, 5, 7, 0, 7, 4, 1, 9
Offset: 3376

Views

Author

Arkadiusz Wesolowski, Aug 15 2016

Keywords

Examples

			28141120136973731333931529758425841918186623820136007878924193493455151...
		

Crossrefs

Programs

  • Magma
    Reverse(Intseq(2^11213-1))[1..105];
    
  • Mathematica
    First@RealDigits@N[2^11213 - 1, 100] (* G. C. Greubel, Aug 15 2016 *)
  • PARI
    eval(Vec(Str(2^11213-1)))[1..105]

Formula

2^A000043(23) - 1.

A275981 Decimal expansion of 2^19937 - 1, the 24th Mersenne prime A000668(24).

Original entry on oeis.org

4, 3, 1, 5, 4, 2, 4, 7, 9, 7, 3, 8, 8, 1, 6, 2, 6, 4, 8, 0, 5, 5, 2, 3, 5, 5, 1, 6, 3, 3, 7, 9, 1, 9, 8, 3, 9, 0, 5, 3, 9, 3, 5, 0, 4, 3, 2, 2, 6, 7, 1, 1, 5, 0, 5, 1, 6, 5, 2, 5, 0, 5, 4, 1, 4, 0, 3, 3, 3, 0, 6, 8, 0, 1, 3, 7, 6, 5, 8, 0, 9, 1, 1, 3, 0, 4, 5, 1, 3, 6, 2, 9, 3, 1, 8, 5, 8, 4, 6, 6, 5, 5, 4, 5, 2
Offset: 6002

Views

Author

Arkadiusz Wesolowski, Aug 15 2016

Keywords

Examples

			43154247973881626480552355163379198390539350432267115051652505414033306...
		

Crossrefs

Programs

  • Magma
    Reverse(Intseq(2^19937-1))[1..105];
    
  • Mathematica
    First@RealDigits@N[2^19937 - 1, 100] (* G. C. Greubel, Aug 15 2016 *)
  • PARI
    eval(Vec(Str(2^19937-1)))[1..105]

Formula

2^A000043(24) - 1.

A275982 Decimal expansion of 2^21701 - 1, the 25th Mersenne prime A000668(25).

Original entry on oeis.org

4, 4, 8, 6, 7, 9, 1, 6, 6, 1, 1, 9, 0, 4, 3, 3, 3, 4, 7, 9, 4, 9, 5, 1, 4, 1, 0, 3, 6, 1, 5, 9, 1, 7, 7, 8, 7, 2, 7, 2, 0, 9, 0, 2, 3, 7, 2, 9, 3, 8, 8, 6, 1, 3, 0, 1, 0, 3, 6, 4, 8, 0, 4, 4, 7, 5, 1, 2, 7, 8, 5, 6, 0, 9, 1, 5, 8, 0, 5, 3, 6, 3, 7, 1, 6, 2, 0, 1, 8, 3, 9, 5, 9, 2, 0, 1, 8, 3, 1, 0, 8, 6, 8, 9, 1
Offset: 6533

Views

Author

Arkadiusz Wesolowski, Aug 15 2016

Keywords

Examples

			44867916611904333479495141036159177872720902372938861301036480447512785...
		

Crossrefs

Programs

  • Magma
    Reverse(Intseq(2^21701-1))[1..105];
    
  • Mathematica
    First@RealDigits@N[2^21701 - 1, 100] (* G. C. Greubel, Aug 15 2016 *)
  • PARI
    eval(Vec(Str(2^21701-1)))[1..105]

Formula

2^A000043(25) - 1.

A275983 Decimal expansion of 2^23209 - 1, the 26th Mersenne prime A000668(26).

Original entry on oeis.org

4, 0, 2, 8, 7, 4, 1, 1, 5, 7, 7, 8, 9, 8, 8, 7, 7, 8, 1, 8, 1, 8, 7, 3, 3, 2, 9, 0, 7, 1, 5, 9, 1, 7, 6, 7, 7, 2, 2, 4, 3, 8, 5, 0, 6, 8, 9, 1, 6, 2, 2, 4, 2, 0, 0, 4, 1, 0, 2, 9, 9, 6, 3, 5, 7, 8, 6, 9, 4, 5, 9, 5, 2, 4, 0, 8, 8, 7, 4, 0, 0, 8, 6, 7, 6, 3, 9, 8, 6, 1, 4, 6, 1, 4, 6, 6, 5, 3, 7, 1, 0, 3, 8, 3, 3
Offset: 6987

Views

Author

Arkadiusz Wesolowski, Aug 15 2016

Keywords

Examples

			40287411577898877818187332907159176772243850689162242004102996357869459...
		

Crossrefs

Programs

  • Magma
    Reverse(Intseq(2^23209-1))[1..105];
    
  • Mathematica
    First@RealDigits@N[2^23209 - 1, 100] (* G. C. Greubel, Aug 15 2016 *)
  • PARI
    eval(Vec(Str(2^23209-1)))[1..105]

Formula

2^A000043(26) - 1.

A275984 Decimal expansion of 2^44497 - 1, the 27th Mersenne prime A000668(27).

Original entry on oeis.org

8, 5, 4, 5, 0, 9, 8, 2, 4, 3, 0, 3, 6, 3, 3, 8, 0, 3, 1, 9, 3, 3, 0, 0, 7, 0, 5, 3, 1, 8, 4, 0, 3, 0, 3, 6, 5, 0, 9, 9, 0, 1, 5, 9, 1, 3, 0, 4, 0, 2, 1, 0, 5, 8, 3, 4, 3, 2, 6, 9, 2, 5, 8, 2, 8, 2, 2, 9, 0, 0, 6, 4, 7, 8, 2, 1, 6, 7, 6, 3, 5, 8, 5, 6, 2, 0, 0, 5, 0, 0, 0, 1, 4, 4, 5, 7, 6, 4, 5, 8, 6, 1, 4, 8, 1
Offset: 13395

Views

Author

Arkadiusz Wesolowski, Aug 15 2016

Keywords

Examples

			85450982430363380319330070531840303650990159130402105834326925828229006...
		

Crossrefs

Programs

  • Magma
    Reverse(Intseq(2^44497-1))[1..105];
    
  • Mathematica
    First@RealDigits@N[2^44497 - 1, 100] (* G. C. Greubel, Aug 15 2016 *)
  • PARI
    eval(Vec(Str(2^44497-1)))[1..105]

Formula

2^A000043(27) - 1.

A138817 Concatenation of final digit of n-th Mersenne prime A000668(n), final digit of n-th even superperfect number A061652(n) and final digit of n-th perfect number A000396(n).

Original entry on oeis.org

326, 748, 166, 748, 166, 166, 748, 748, 166, 166, 748, 748, 166, 748, 748, 748, 166, 166, 166, 748, 166, 166, 166, 166, 166, 166, 166, 748, 748, 166, 748, 748, 166, 748, 166, 166, 166, 166, 166
Offset: 1

Views

Author

Omar E. Pol, Apr 01 2008

Keywords

Comments

Also, concatenation of final digit of n-th Mersenne prime A000668(n), final digit of n-th superperfect number A019279(n) and final digit of n-th perfect number A000396(n), if there are no odd superperfect numbers.
Also, concatenation of n-th term of A080172, A138125(n) and A094540(n).
a(1)=326. For n>1 a(n) is equal to 166 or 748, only.

Crossrefs

Previous Showing 31-40 of 640 results. Next