A259702
Row sums of A259701 except first column.
Original entry on oeis.org
0, 0, 0, 1, 2, 9, 21, 78, 199, 699, 1889, 6491, 18261, 62145, 180091, 610220, 1809045, 6118849, 18469079, 62440111, 191235803, 646681908, 2004592956, 6782895492, 21239394216, 71925883149, 227169634741, 769998727785, 2450045838331, 8312417389237, 26620229804149
Offset: 2
Cf.
A301620 (essentially twice this sequence).
A373325
Number of semi-infinite curves of the plane with n simple, transverse self-intersections and no other self-intersections, up to an orientation-preserving homeomorphism.
Original entry on oeis.org
1, 2, 10, 66, 498, 4072, 35144, 315352, 2914074, 27553880, 265387528, 2595131328
Offset: 0
Curves without self-intersection are equivalent; one might for instance take the half-line y <= 0 as their representative; so a(0) = 1.
To get a curve with n+1 self-intersections, one can start from a curve with n self-intersections; identify the cycle of oriented edges that directly surrounds the finite extremity of the curve; choose an edge from that cycle and extend the curve so that it crosses that edge.
When "outside" it might help visualization to imagine that a noncrossable oriented edge "at infinity" closes the cycle.
Thus, for a transition between 0 and 1 self-intersection, the choice is between making a loop that turns left and making a loop that turns right; so a(1) = 2.
See provided illustration for n=0..3 in section 'Links'.
A259703
Triangle read by rows: T(n,k) = number of permutations without overlaps in which the first increasing run has length k.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 5, 2, 2, 1, 12, 5, 4, 2, 1, 33, 13, 12, 4, 3, 1, 87, 35, 30, 12, 6, 3, 1, 252, 98, 90, 32, 21, 6, 4, 1, 703, 278, 243, 94, 54, 21, 8, 4, 1, 2105, 812, 745, 270, 175, 57, 32, 8, 5, 1, 6099, 2385, 2108, 808, 485, 181, 84, 32, 10, 5, 1
Offset: 2
Triangle begins:
1;
1, 1;
2, 1, 1;
5, 2, 2, 1;
12, 5, 4, 2, 1;
33, 13, 12, 4, 3, 1;
87, 35, 30, 12, 6, 3, 1;
252, 98, 90, 32, 21, 6, 4, 1;
703, 278, 243, 94, 54, 21, 8, 4, 1;
2105, 812, 745, 270, 175, 57, 32, 8, 5, 1;
6099, 2385, 2108, 808, 485, 181, 84, 32, 10, 5, 1;
...
- A. Sade, Sur les Chevauchements des Permutations, published by the author, Marseille, 1949
-
Overlapfree(v)={for(i=1, #v, for(j=i+1, v[i]-1, if(v[j]>v[i], return(0)))); 1}
Chords(u)={my(n=2*#u, v=vector(n), s=u[#u]); if(s%2==0, s=n+1-s); for(i=1, #u, my(t=n+1-s); s=u[i]; if(s%2==0, s=n+1-s); v[s]=t; v[t]=s); v}
FirstRunLen(v)={my(e=1); for(i=1, #v, if(v[i]==e, e++)); e-2}
row(n)={my(r=vector(n-1)); if(n>=2, forperm(n, v, if(v[1]<>1, break); if(Overlapfree(Chords(v)), r[FirstRunLen(v)]++))); r}
for(n=2, 8, print(row(n))) \\ Andrew Howroyd, Dec 07 2018
A287548
Triangle read by rows: T(n,k), where each row begins with the Catalan number for n nonintersecting arches and transitions through k generations of eliminating and reducing arch configurations to an end row entry equal to number of semi-meander solutions for n arches.
Original entry on oeis.org
1, 2, 1, 5, 3, 2, 14, 9, 7, 4, 42, 28, 23, 16, 10, 132, 90, 76, 57, 42, 24, 429, 297, 255, 199, 156, 108, 66, 1430, 1001, 869, 695, 563, 420, 304, 174, 4862, 3432, 3003, 2442, 2019, 1568, 1210, 836, 504
Offset: 1
Triangle begins:
n\k 1 2 3 4 5 6 7 8
1: 1
2: 2 1
3: 5 3 2
4: 14 9 7 4
5: 42 28 23 16 10
6: 132 90 76 57 42 24
7: 429 297 255 199 156 108 66
8: 1430 1001 869 695 563 420 304 174
...
Capital letters (U,D) represent beginning and end of first and last arch. Only 1 UD ends arch sequence in next generation.
Reduction of arches: Elimination of arches:
(middle D U = new arch U D in the next arch generation)
/\
/\ //\\ /\/\/\/\ = UDududUD
//\\/\///\\\ = UudDudUuuddD /\
/\ /\ / \
/\//\\//\\ = UDuuddUudD //\/\\ = UududD
end
For n=3 C(n)=5 nonintersecting arch configurations:
UuuddD UududD UudDUD UDUudD UDudUD T(3,1)=5
end end UDUD UDUD UudD T(3,2)=3
UD UD end T(3,3)=2
A330269
The number of semi-meanders with n top arches and concentric arches within the starting arch or a starting arch with length one.
Original entry on oeis.org
1, 1, 2, 4, 8, 18, 42, 108, 282, 786, 2192, 6402, 18600, 55978, 167256, 514102, 1567976, 4896164, 15170630, 47957260, 150468678, 480371736, 1522649458, 4900568718, 15665593150, 50761432998, 163431901126, 532624603680, 1725349278270, 5650796083020, 18401781369182
Offset: 1
For n = 5, a(5) = 8:
/\ /\
//\\ /\ / \ /\
///\\\ /\ /\ / \ / /\\ /\ //\\
/\////\\\\, /\//\\//\\, /\/\//\/\\, /\//\//\\\, //\\///\\\,
/\
/\ //\\ starting arch
/\ /\ //\\ /\ ///\\\ (1) (2) (3) (4)
//\\//\\/\, ///\\\//\\, ////\\\\/\, 4 + 2 + 1 + 1 = 8.
A331499
T(n,k) is the number of nonintersecting arch configurations with n arches on a horizontal axis that have a starting parent arch configuration of k arches.
Original entry on oeis.org
1, 1, 1, 2, 1, 2, 4, 3, 2, 5, 10, 6, 7, 5, 14, 24, 18, 15, 19, 14, 42, 66, 42, 48, 43, 56, 42, 132, 174, 130, 116, 143, 132, 174, 132, 429, 504, 332, 374, 358, 451, 423, 561, 429, 1430, 1406, 1048, 974, 1182, 1163, 1475, 1397, 1859, 1430, 4862
Offset: 1
Triangle T(n,k) begins:
n\k 1 2 3 4 5 6 7 8 9 10 11
1: 1
2: 1 1
3: 2 1 2
4: 4 3 2 5
5: 10 6 7 5 14
6: 24 18 15 19 14 42
7: 66 42 48 43 56 42 132
8: 174 130 116 143 132 174 132 429
9: 504 332 374 358 451 423 561 429 1430
10: 1406 1048 974 1182 1163 1475 1397 1859 1430 4862
11: 4210 2836 3166 3152 3906 3897 4950 4719 6292 4862 16796
A339179
Irregular triangle read by rows: for n >= 2, 2 <= k <= floor(n/2) + 1, T(n,k) = the number of semi-meanders with n top arches, a first arch of length one and k arch groupings.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 4, 4, 2, 10, 10, 4, 24, 24, 14, 4, 66, 66, 34, 8, 174, 174, 106, 42, 8, 504, 504, 284, 98, 16, 1406, 1406, 878, 390, 114, 16, 4210, 4210, 2486, 1002, 258, 32, 12198, 12198, 7738, 3652, 1270, 290, 32, 37378, 37378, 22714, 9962, 3140, 642, 64, 111278, 111278, 71370, 34986, 13370, 3794, 706, 64
Offset: 2
For n = 6: /\ = arch of length one;
/\ /\ /\ /\
/ \ //\\ / \ //\\ 4 with 2 groupings
/ /\\ // \\ / \ ///\\\
/ / \\ // /\\\ //\ /\\ ////\\\\
/\ //\//\/\\\, /\ ///\//\\\\, /\ ///\\//\\\, /\ /////\\\\\,
/\ /\
//\\ /\ /\ / \ 4 with 3 groupings
///\\\ /\ //\\ //\\ /\ //\ \
/\ /\ ////\\\\, /\ //\\ ///\\\, /\ ///\\\ //\\, /\ /\ ///\\/\\,
/\ 2 with 4 groupings
/ \ /\ /\
/\ /\ /\ //\/\\, /\ //\\ /\ //\\, T(6,2) = 4, T(6,3) = 4, T(6,4) = 2;
Irregular triangle begins:
n\k (2) (3) (4) (5) (6)
2: 1
3: 1
4: 1 1
5: 2 2
6: 4 4 2
7: 10 10 4
8: 24 24 14 4
9: 66 66 34 8
10: 174 174 106 42 8
...
A276051
a(n) is the number of top arches with length =1 for all semi meander solutions with n top arches.
Original entry on oeis.org
1, 2, 4, 10, 28, 80, 244, 732, 2320, 7172, 23212, 73228, 240184, 768932, 2545568, 8240604, 27468352, 89699652, 300579836, 988463844
Offset: 1
a(4)=10 /\ /\ /\ /\
/\/\//\\ //\\ //\\/\/\ //\\
/\///\\\ ///\\\/\.
A333971
a(n) is the number of semi-meanders with n top arches that have at least one arch with length 1 adjacent to the center of the top arch configuration or at either end of the arch configuration.
Original entry on oeis.org
1, 2, 4, 8, 24, 56, 168, 432, 1320, 3608, 11216, 31952, 100720, 295600, 942272, 2828112, 9097256, 27785112, 90048656, 278899152, 909566560, 2849498656, 9342566152, 29548420688, 97323261664
Offset: 2
For n = 6: (10) is an arch of length 1 that is at either end of the top arch configuration or adjacent to the center of the top arch configuration, a(6) = 24.
1111(10)0000(10), 111100(10)00(10), 1111000010(10), 1110(10)0100(10), 1110(10)001100, 111001(10)00(10), 1110001100(10), 111000(10)1100, 1101(10)0010(10), 110110(10)10(10), 110011(10)00(10), 110011(10)00(10), 1100(10)111000, 1100(10)1100(10), (10)1111(10)0000, (10)11(10)110000, (10)11(10)011000, (10)11(10)001100, (10)1101(10)1000, (10)1100111000, (10)1100(10)1100, (10)1011110000, (10)1011(10)0100, (10)10(10)110100.
A334615
a(n) is the number of semi-meanders with n top arches that has no arch of length 1 at the ends of the top arch configuration and no arch of length 1 adjacent to the center of the top arch configuration.
Original entry on oeis.org
0, 0, 0, 2, 0, 10, 6, 72, 86, 602, 982, 5426, 10558, 51246, 111602, 500076, 1177210, 5001518, 12462762, 51003906, 132711162, 528420604, 1422458280, 5547419160, 15347206464
Offset: 2
For n = 7: a(7) = 10. 11111000001100, 11110000111000, 11110000101100, 11101000110100, 11100011110000, 11100011100100, 11011000111000, 11010011101000, 11001111100000, 11001011110000. /\
/ \
/ /\ \
11001011110000 --> /\ / //\\ \ 10 = arch length 1
//\\ /\ / ///\\\ \
end center| end
11 01 11 00 no 10 in designated positions.
Comments