cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 182 results. Next

A369165 a(n) = A001222(A000688(n)).

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0
Offset: 1

Views

Author

Amiram Eldar, Jan 15 2024

Keywords

Comments

First differs from A369164 at n = 36.
The sums of the first 10^k terms, for k = 1, 2, ..., are 3, 42, 450, 4592, 46185, 462402, 4625478, 46258861, 462599818, 4626029362, ... . From these values the asymptotic mean of this sequence, whose existence was proven by Ivić (1983) (see the Formula section), can be empirically evaluated by 0.4626... .
First differs from A056170 at n=128, 256, 384, 512, 640.... - R. J. Mathar, Jan 18 2024

References

  • József Sándor, Dragoslav S. Mitrinovic, Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter V, page 164.

Crossrefs

Programs

  • Mathematica
    Table[PrimeOmega[FiniteAbelianGroupCount[n]], {n, 1, 100}]
  • PARI
    a(n) = bigomega(vecprod(apply(numbpart, factor(n)[, 2])));

Formula

Sum_{k=1..n} a(k) = c * n + O(sqrt(n) * log(n)^3/log(log(n))), where c = Sum_{k>=1} d(k) * A001222(k) is a constant, d(k) is the asymptotic density of the set {m | A000688(m) = k} (e.g., d(1) = A059956, d(2) = A271971, d(3) appears in A048109) (Ivić, 1983).

A369168 Numbers k such that A000005(k) = A000688(k).

Original entry on oeis.org

1, 16, 81, 625, 1296, 2401, 10000, 14641, 23040, 28561, 32256, 38400, 38416, 50625, 50688, 59904, 75264, 78336, 83521, 87552, 89600, 105984, 125440, 130321, 133632, 140800, 142848, 166400, 170496, 185856, 188928, 194481, 198144, 216576, 217600, 234256, 243200
Offset: 1

Views

Author

Amiram Eldar, Jan 15 2024

Keywords

Comments

The asymptotic density of this sequence is 0 (Ivić, 1983).
If k is a term, then every number with the same prime signature (A124832) as k is a term. The least term of each prime signature is given in A369169.

References

  • József Sándor, Dragoslav S. Mitrinovic, Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter II, page 73.

Crossrefs

Subsequence of A369170.
A369169 is a subsequence.

Programs

  • Mathematica
    Select[Range[250000], DivisorSigma[0, #] == FiniteAbelianGroupCount[#] &]
  • PARI
    is(n) = {my(e = factor(n)[,2]); vecprod(apply(x -> x+1, e)) == vecprod(apply(numbpart, e));}

Formula

x * log(log(x))/log(x) << N(x) << x / log(x)^(1-eps) for every 0 < eps < 1, where N(x) is the number of terms not exceeding x (Ivić, 1983).

A369169 Terms k of A025487 such that A000005(k) = A000688(k).

Original entry on oeis.org

1, 16, 1296, 23040, 810000, 7257600, 16934400, 283852800, 1437004800, 1944810000, 13970880000, 30735936000, 232475443200, 852409958400, 1765360396800, 3269185920000, 7192209024000, 8029628006400, 28473963210000, 97893956160000, 181803061440000, 1086822696960000
Offset: 1

Views

Author

Amiram Eldar, Jan 15 2024

Keywords

Comments

Since both A000005(k) and A000688(k) depend only on the prime signature of k (A124832), if k is a term of this sequence then every number m such that A046523(m) = k is a term of A369168.
From David A. Corneth, Jan 15 2024: (Start)
16 | a(n) for n > 1.
This sequence contains A002110(n)^4. (End)

Examples

			16 is in the sequence as 16 has 5 divisors (1, 2, 4, 8, 16) and 5 factorizations into prime powers (16 = 2*8 = 4*4 = 2*2*4 = 2*2*2*2).
		

References

  • József Sándor, Dragoslav S. Mitrinovic, Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter II, page 73.

Crossrefs

Intersection of A025487 and A369168.

Programs

  • Mathematica
    lps = Cases[Import["https://oeis.org/A025487/b025487.txt", "Table"], {, }][[;; , 2]]; Select[lps, DivisorSigma[0, #] == FiniteAbelianGroupCount[#] &]

A379359 Numerators of the partial sums of the reciprocals of the number of abelian groups function (A000688).

Original entry on oeis.org

1, 2, 3, 7, 9, 11, 13, 41, 22, 25, 28, 59, 65, 71, 77, 391, 421, 218, 233, 481, 511, 541, 571, 581, 298, 313, 106, 217, 227, 237, 247, 1739, 1809, 1879, 1949, 3933, 4073, 4213, 4353, 13199, 13619, 14039, 14459, 14669, 14879, 15299, 15719, 15803, 16013, 16223, 16643
Offset: 1

Views

Author

Amiram Eldar, Dec 21 2024

Keywords

Examples

			Fractions begin with 1, 2, 3, 7/2, 9/2, 11/2, 13/2, 41/6, 22/3, 25/3, 28/3, 59/6, ...
		

References

  • Jean-Marie De Koninck and Aleksandar Ivić, Topics in Arithmetical Functions, North-Holland Publishing Company, Amsterdam, Netherlands, 1980. See pp. 13-16, Theorem 1.3.
  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003. See section 5.1, Abelian group enumeration constants, p. 274.

Crossrefs

Cf. A000688, A063966, A084911, A370897, A379360 (denominators), A379361.

Programs

  • Mathematica
    Numerator[Accumulate[Table[1/FiniteAbelianGroupCount[n], {n, 1, 100}]]]
  • PARI
    f(n) = vecprod(apply(numbpart, factor(n)[, 2]));
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / f(k); print1(numerator(s), ", "))};

Formula

a(n) = numerator(Sum_{k=1..n} 1/A000688(k)).
a(n)/A379360(n) = D * n + O(sqrt(n/log(n))), where D = A084911.

A379360 Denominators of the partial sums of the reciprocals of the number of abelian groups function (A000688).

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 6, 3, 3, 3, 6, 6, 6, 6, 30, 30, 15, 15, 30, 30, 30, 30, 30, 15, 15, 5, 10, 10, 10, 10, 70, 70, 70, 70, 140, 140, 140, 140, 420, 420, 420, 420, 420, 420, 420, 420, 420, 420, 420, 420, 420, 420, 420, 420, 140, 140, 140, 140, 140, 140, 140, 140
Offset: 1

Views

Author

Amiram Eldar, Dec 21 2024

Keywords

References

  • Jean-Marie De Koninck and Aleksandar Ivić, Topics in Arithmetical Functions, North-Holland Publishing Company, Amsterdam, Netherlands, 1980. See pp. 13-16, Theorem 1.3.
  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003. See section 5.1, Abelian group enumeration constants, p. 274.

Crossrefs

Cf. A000688, A063966, A370897, A379359 (numerators), A379362.

Programs

  • Mathematica
    Denominator[Accumulate[Table[1/FiniteAbelianGroupCount[n], {n, 1, 100}]]]
  • PARI
    f(n) = vecprod(apply(numbpart, factor(n)[, 2]));
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / f(k); print1(denominator(s), ", "))};

Formula

a(n) = denominator(Sum_{k=1..n} 1/A000688(k)).

A379361 Numerators of the partial alternating sums of the reciprocals of the number of abelian groups function (A000688).

Original entry on oeis.org

1, 0, 1, 1, 3, 1, 3, 7, 5, 2, 5, 7, 13, 7, 13, 59, 89, 37, 52, 89, 119, 89, 119, 109, 62, 47, 52, 89, 119, 89, 119, 803, 1013, 803, 1013, 1921, 2341, 1921, 2341, 2201, 2621, 2201, 2621, 2411, 2621, 2201, 2621, 2537, 2747, 2537, 2957, 2747, 3167, 1009, 1149, 3307
Offset: 1

Views

Author

Amiram Eldar, Dec 21 2024

Keywords

Examples

			Fractions begin with 1, 0, 1, 1/2, 3/2, 1/2, 3/2, 7/6, 5/3, 2/3, 5/3, 7/6, ...
		

Crossrefs

Programs

  • Mathematica
    Numerator[Accumulate[Table[(-1)^(n+1)/FiniteAbelianGroupCount[n], {n, 1, 100}]]]
  • PARI
    f(n) = vecprod(apply(numbpart, factor(n)[, 2]));
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / f(k); print1(numerator(s), ", "))};

Formula

a(n) = numerator(Sum_{k=1..n} (-1)^(k+1)/A000688(k)).
a(n)/A379362(n) ~ D * c * n, where D = A084911, c = 2/(1 + Sum_{k>=1} 1/(P(k)*2^k)) - 1 = 0.18634377034863729099..., and P(k) = A000041(k).

A379362 Denominators of the partial alternating sums of the reciprocals of the number of abelian groups function (A000688).

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 6, 3, 3, 3, 6, 6, 6, 6, 30, 30, 15, 15, 30, 30, 30, 30, 30, 15, 15, 15, 30, 30, 30, 30, 210, 210, 210, 210, 420, 420, 420, 420, 420, 420, 420, 420, 420, 420, 420, 420, 420, 420, 420, 420, 420, 420, 140, 140, 420, 420, 420, 420, 420, 420, 420
Offset: 1

Views

Author

Amiram Eldar, Dec 21 2024

Keywords

Crossrefs

Cf. A000688, A063966, A370897, A379360, A379361 (numerators).

Programs

  • Mathematica
    Denominator[Accumulate[Table[(-1)^(n+1)/FiniteAbelianGroupCount[n], {n, 1, 100}]]]
  • PARI
    f(n) = vecprod(apply(numbpart, factor(n)[, 2]));
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / f(k); print1(denominator(s), ", "))};

Formula

a(n) = denominator(Sum_{k=1..n} (-1)^(k+1)/A000688(k)).

A369166 Numbers k such that A000688(k) = A000688(k+1).

Original entry on oeis.org

1, 2, 5, 6, 10, 13, 14, 21, 22, 29, 30, 33, 34, 37, 38, 41, 42, 44, 46, 49, 57, 58, 61, 65, 66, 69, 70, 73, 75, 77, 78, 80, 82, 85, 86, 93, 94, 98, 101, 102, 105, 106, 109, 110, 113, 114, 116, 118, 122, 129, 130, 133, 135, 137, 138, 141, 142, 145, 147, 154, 157
Offset: 1

Views

Author

Amiram Eldar, Jan 15 2024

Keywords

Comments

First differs from A358817 at n = 165.
The numbers of terms not exceeding 10^k, for k = 1, 2, ..., are 5, 38, 368, 3632, 36266, 362468, 3624664, 36246863, 362468411, 3624675258, ... . From these values the asymptotic density of this sequence, whose existence was proven by Erdős and Ivić (1987) (the constant c in the Formula section), can be empirically evaluated by 0.36246... .

References

  • József Sándor, Dragoslav S. Mitrinovic, Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter XIII, pp. 475-476.

Crossrefs

Subsequences: A007674, A052213, A085651, A335328.

Programs

  • Mathematica
    Select[Range[300], FiniteAbelianGroupCount[#] == FiniteAbelianGroupCount[#+1] &]
  • PARI
    lista(kmax) = {my(c1 = 1, c2); for(k = 2, kmax, c2 = vecprod(apply(numbpart, factor(k)[, 2])); if(c1 == c2, print1(k-1, ", ")); c1 = c2);}

Formula

The number of terms not exceeding x, N(x) = c * x + O(x^(3/4) * log(x)^4), where c > 0 is a constant (Erdős and Ivić, 1987).

A369167 a(n) = A000688(n + A000688(n)).

Original entry on oeis.org

1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 5, 1, 2, 2, 2, 1, 1, 1, 3, 3, 3, 3, 1, 1, 1, 1, 7, 1, 1, 1, 4, 3, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 5, 1, 1, 2, 2, 3, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 1, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 3
Offset: 1

Views

Author

Amiram Eldar, Jan 15 2024

Keywords

References

  • József Sándor, Dragoslav S. Mitrinovic, Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter XIII, page 478.

Crossrefs

Programs

  • Mathematica
    Table[FiniteAbelianGroupCount[n + FiniteAbelianGroupCount[n]], {n, 1, 100}]
  • PARI
    A000688(n) = vecprod(apply(numbpart, factor(n)[, 2]));
    a(n) = A000688(n + A000688(n));

Formula

Sum_{k=1..n} a(k) = c * n + O(n^(k+eps)) for any eps > 0, where c > 0 is a constant and k = 11/12 (Ivić, 1992), 3/4 (Fan and Zhai, 2023), or 2/3 (Fan and Zhai, 2022).

A369170 Numbers k such that A000005(k) <= A000688(k).

Original entry on oeis.org

1, 16, 32, 64, 81, 128, 243, 256, 512, 576, 625, 729, 768, 1024, 1152, 1280, 1296, 1536, 1600, 1728, 1792, 2048, 2187, 2304, 2401, 2560, 2592, 2816, 2916, 3072, 3125, 3136, 3200, 3328, 3456, 3584, 3888, 4096, 4352, 4608, 4864, 5120, 5184, 5632, 5832, 5888, 6144
Offset: 1

Views

Author

Amiram Eldar, Jan 15 2024

Keywords

Comments

The asymptotic density of this sequence is 0 (Ivić, 1983).

References

  • József Sándor, Dragoslav S. Mitrinovic, Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter II, page 73.

Crossrefs

Subsequences: A369168, A369169.

Programs

  • Mathematica
    Select[Range[6000], DivisorSigma[0, #] <= FiniteAbelianGroupCount[#] &]
  • PARI
    is(n) = {my(e = factor(n)[,2]); vecprod(apply(x -> x+1, e)) <= vecprod(apply(numbpart, e));}

Formula

The number of terms not exceeding x, N(x) << x / log(x)^(1-eps) for every 0 < eps < 1 (Ivić, 1983).
Previous Showing 11-20 of 182 results. Next