cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 79 results. Next

A324328 Number of topologically connected chord graphs on a subset of {1,...,n}.

Original entry on oeis.org

1, 1, 2, 4, 8, 27, 354
Offset: 0

Views

Author

Gus Wiseman, Feb 22 2019

Keywords

Comments

A graph is topologically connected if the graph whose vertices are the edges and whose edges are crossing pairs of edges is connected, where two edges cross each other if they are of the form {{x,y},{z,t}} with x < z < y < t or z < x < t < y.

Examples

			The a(0) = 1 through a(5) = 27 graphs:
  {}  {}  {}      {}      {}          {}
          {{12}}  {{12}}  {{12}}      {{12}}
                  {{13}}  {{13}}      {{13}}
                  {{23}}  {{14}}      {{14}}
                          {{23}}      {{15}}
                          {{24}}      {{23}}
                          {{34}}      {{24}}
                          {{13}{24}}  {{25}}
                                      {{34}}
                                      {{35}}
                                      {{45}}
                                      {{13}{24}}
                                      {{13}{25}}
                                      {{14}{25}}
                                      {{14}{35}}
                                      {{24}{35}}
                                      {{13}{14}{25}}
                                      {{13}{24}{25}}
                                      {{13}{24}{35}}
                                      {{14}{24}{35}}
                                      {{14}{25}{35}}
                                      {{13}{14}{24}{25}}
                                      {{13}{14}{24}{35}}
                                      {{13}{14}{25}{35}}
                                      {{13}{24}{25}{35}}
                                      {{14}{24}{25}{35}}
                                      {{13}{14}{24}{25}{35}}
		

Crossrefs

Cf. A000108, A000699, A001764, A002061, A007297, A016098, A054726 (non-crossing chord graphs), A099947, A136653, A268814.
Cf. A324168, A324169, A324172, A324173, A324323, A324327 (covering case).

Programs

  • Mathematica
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    crosscmpts[stn_]:=csm[Union[Subsets[stn,{1}],Select[Subsets[stn,{2}],croXQ]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Length[crosscmpts[#]]<=1&]],{n,0,5}]

Formula

Binomial transform of A324327.

A111088 a(0) = a(1) = 1, a(2) = x, a(3) = 2x^2, a(n) = x*(n-1)*a(n-1) + Sum_{j=2..n-2} (j-1)*a(j)*a(n-j), n>=4 and for x = 2.

Original entry on oeis.org

1, 1, 2, 8, 52, 464, 5184, 68928, 1057584, 18345536, 354570112, 7551674624, 175700025728, 4433961734656, 120642462777344, 3520972469815296, 109731998026937088, 3637456413350962176, 127800512612435896320
Offset: 0

Views

Author

Philippe Deléham, Oct 10 2005

Keywords

Comments

For x = 1, this is : 1, 1, 1, 2, 7, 34, 206, 1476, 12123, ..., see A075834.
For x = 0, this is : 1, 1, 0, 0, 0, 0, 0, 0, 0, ...
For x = -1, this is : 1, 1, -1, 2, -5, 14, -42, 132, -429, ...,((-1)^(n+1)* A000108(n)).
a(n)*2^(-n) is the coefficient at the x^(n-1) term in the series reversal of the asymptotic expansion of 2 * DawsonF(sqrt(x))/sqrt(x) = sqrt(Pi) * exp(-x) * erfi(sqrt(x)) / sqrt(x) for x -> inf. - Vladimir Reshetnikov, Apr 23 2016

Examples

			From _Paul D. Hanna_, Aug 02 2014: (Start)
O.g.f.: A(x) = 1 + x + 2*x^2 + 8*x^3 + 52*x^4 + 464*x^5 + 5184*x^6 +...
where A(x) = x/Series_Reversion(x + x^2 + 3*x^3 + 15*x^4 + 105*x^5 + 945*x^6 +...)
and thus
A(x) = 1 + x/A(x) + 3*x^2/A(x)^2 + 15*x^3/A(x)^3 + 105*x^4/A(x)^4 + 945*x^5/A(x)^5 +...
Illustration of the initial terms:
a(2) = 2;
a(3) = 2*2^2 = 8;
a(4) = 2*3*8 + 1*2*2 = 52;
a(5) = 2*4*52 + 1*2*8 + 2*8*2 = 464;
a(6) = 2*5*464 + 1*2*52 + 2*8*8 + 3*52*2 = 5184; ...
To illustrate formula: [x^(n+1)] A(x)^n = 2*n*([x^n] A(x)^n), form a table of coefficients of x^k in A(x)^n:
n=1: [1, 1,  2,   8,   52,   464,  5184,   68928,  1057584, ...];
n=2: [1, 2,  5,  20,  124,  1064, 11568,  150912,  2283888, ...];
n=3: [1, 3,  9,  37,  222,  1836, 19412,  248256,  3703536, ...];
n=4: [1, 4, 14,  60,  353,  2824, 29032,  363696,  5345040, ...];
n=5: [1, 5, 20,  90,  525,  4081, 40810,  500480,  7241460, ...];
n=6: [1, 6, 27, 128,  747,  5670, 55205,  662460,  9431172, ...];
n=7: [1, 7, 35, 175, 1029,  7665, 72765,  854197, 11958758, ...];
n=8: [1, 8, 44, 232, 1382, 10152, 94140, 1081080, 14876033, ...]; ...
then we can see that the diagonals are related in the following way:
[2, 20, 222, 2824, 40810, 662460, 11958758, ...]
= [2*1, 4*5, 6*37, 8*353, 10*4081, 12*55205, 14*854197, ...].
Also, the diagonal
[1, 5, 37, 353, 4081, 55205, 854197, 14876033, ...]
is the logarithmic derivative of the g.f. of the double factorials.
Further, the main diagonal in the above table equals:
[1, 2*1, 3*3, 4*15, 5*105, 6*945, 7*10395, 8*135135, ...].
(End)
		

Crossrefs

Programs

  • Mathematica
    x = 2; a[0] = a[1] = 1; a[2] = x; a[3] = 2x^2; a[n_] := a[n] = x*(n - 1)*a[n - 1] + Sum[(j - 1)*a[j]*a[n - j], {j, 2, n - 2}]; Table[ a[n], {n, 0, 18}] (* Robert G. Wilson v *)
    Module[{max = 20, s}, s = InverseSeries[Series[2 DawsonF[Sqrt[x]]/Sqrt[x], {x, Infinity, max + 1}][[2, 2, 2]]]; Table[SeriesCoefficient[s, n-1] 2^n, {n, 0, max}]] (* Vladimir Reshetnikov, Apr 23 2016 *)
  • PARI
    a(n)=Vec(x/serreverse(x*Ser(vector(n+1,k,(2*(k-1))!/(k-1)!/2^(k-1)))))[n+1] /* Paul D. Hanna, Jul 09 2006 */
    
  • PARI
    /* From o.g.f. A = 1 + x*(A + x*A')/(A - x*A'): */
    {a(n)=local(A=1+x); for(i=1, n, A=1 + x*(A+x*A')/(A-x*A' +x*O(x^n))); polcoeff(A,n)}
    for(n=0,20,print1(a(n),", ")) /* Paul D. Hanna, Aug 02 2014 */

Formula

O.g.f. A(x) satisfies:
(1) A(x) = x / Series_Reversion(x*G(x)) where G(x) = A(x*G(x)) and A(x) = G(x/A(x)) such that G(x) is the g.f. of the double factorials (A001147). - Paul D. Hanna, Jul 09 2006
(2) A(x) = Sum_{n>=0} A001147(n) * x^n / A(x)^n, where A001147(n) = (2*n)!/(n!*2^n). - Paul D. Hanna, Aug 02 2014
(3) A(x) = 1 + x * (A(x) + x*A'(x)) / (A(x) - x*A'(x)). - Paul D. Hanna, Aug 02 2014
(4) [x^(n+1)] A(x)^n = 2*n*([x^n] A(x)^n) for n>=0. - Paul D. Hanna, Aug 02 2014
a(n) ~ 2^(n+1/2) * n^n / exp(n+1/2). - Vaclav Kotesovec, Aug 02 2014

Extensions

More terms from Robert G. Wilson v, Oct 12 2005

A113129 Triangle T(n,k), 0<=k<=n, of coefficients of polynomials P_n(x) related to convolution of the k-fold factorials.

Original entry on oeis.org

1, 0, 1, 0, 0, 2, 0, 0, 1, 6, 0, 0, 0, 10, 24, 0, 0, 0, 4, 82, 120, 0, 0, 0, 0, 84, 672, 720, 0, 0, 0, 0, 27, 1236, 5820, 5040, 0, 0, 0, 0, 0, 930, 16328, 54288, 40320, 0, 0, 0, 0, 0, 248, 20850, 211080, 548496, 362880, 0, 0, 0, 0, 0, 0, 12452, 396528, 2775432
Offset: 0

Views

Author

Philippe Deléham and Paul D. Hanna, Oct 28 2005

Keywords

Comments

Let R(m,n,k), 0<=k<=n, the Riordan array (1,x*g(x)) where g(x) is g.f. of the m-fold factorials . Then R(m,n,k) = R(m,n-1,k-1) + Sum_{j, 0<=j<=n-1-k} R(m,n-1,k+j)*P_m(j), R(m,n,0) = 0^n and R(m,0,k) = 0 if k>n.

Examples

			Triangle begins:
.1;
.0, 1;
.0, 0, 2;
.0, 0, 1, 6;
.0, 0, 0, 10, 24;
.0, 0, 0, 4, 82, 120;
.0, 0, 0, 0, 84, 672, 720;
.0, 0, 0, 0, 27, 1236, 5820, 5040;
.0, 0, 0, 0, 0, 930, 16328, 54288, 40320;
.0, 0, 0, 0, 0, 248, 20850, 211080, 548496, 362880;
.0, 0, 0, 0, 0, 0, 12452, 396528, 2775432, 6003360, 362880;
.0, 0, 0, 0, 0, 0, 2830, 38732, 7057308, 37831752, 71019360, 39916800;
		

Crossrefs

R(m, n, k) : A097805 (m=0), A084938 (m=1), A111106 (m=2), A113333 (column sums).

Formula

P_0(x) = 1, P_1(x) = x, P_2(x) = 2*x^2, P_ n(x) = n*x*P_(n-1)(x) + Sum_{j, 1<=j<=n-1} j*P_j(x)*P_(n-1-j)(x).
P_n(x) = Sum_{k, 0<=k<=n} T(n, k)*x^k.
P_n(0) = A000007(n).
P_n(x) = A075834(n+1), A111088(n+1), A113130(n+1), A113131(n+1), A113132(n+1), A113133(n+1), A113134(n+1), A113135(n+1) for x = 1, 2, 3, 4, 5, 6, 7, 8 respectively.
P_n(-1) = (-1)^n*A000108(n), signed Catalan numbers.
T(n, n) = n! = A000142(n).
T(2*n+1, n+1) = A000699(n+1) (number of irreducible diagrams with 2n+2 nodes).
T(2*n+2, n+2) = A113332(n) = A000699(n+2)*(2*n+3)*(n+2)/(3*(n+1)).

Extensions

Corrected by Philippe Deléham, Dec 18 2008

A113662 G.f. satisfies: A(x) = (1 + x*(d/dx x*A(x)) )^2.

Original entry on oeis.org

1, 2, 9, 62, 566, 6372, 84837, 1300214, 22511322, 434226300, 9231983850, 214481625516, 5406323440492, 146963638311880, 4286068830850797, 133501081493969574, 4423404073559930162, 155359770700317171084
Offset: 0

Views

Author

Paul D. Hanna, Nov 04 2005

Keywords

Comments

Self-convolution of A000699 (after ignoring the initial term), [previous name].

Examples

			G.f. A(x) = 1 + 2*x + 9*x^2 + 62*x^3 + 566*x^4 + 6372*x^5 + 84837*x^6 + 1300214*x^7 + ...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x*O(x^n));for(i=1,n, A=(1+x*deriv(x*A))^2);polcoeff(A,n,x)}
    
  • PARI
    A000699_seq(N) = {
      my(a = vector(N)); a[1] = 1;
      for (n=2, N, a[n] = sum(k=1, n-1, (2*k-1)*a[k]*a[n-k])); a;
    };
    Vec(sqr(Ser(A000699_seq(N))))  \\ Gheorghe Coserea, Jan 23 2017

Formula

G.f. satisfies: A(x) = (1 + x*(d/dx x*A(x)) )^2.
a(n) ~ 2^(n + 5/2) * n^(n+1) / exp(n+1). - Vaclav Kotesovec, Oct 23 2020

Extensions

Name replaced with an existing formula by Paul D. Hanna, Sep 16 2024

A113669 Self-convolution cube equals A113663, where a(n) = n*A113663(n-1) for n>=1, with a(0)=1.

Original entry on oeis.org

1, 1, 6, 63, 904, 16080, 337374, 8107743, 218940480, 6554205342, 215319184860, 7701064928370, 297912862462680, 12396725926132990, 552257670588677214, 26229243983909050215, 1323230977463353055616, 70673562984581535191094
Offset: 0

Views

Author

Paul D. Hanna, Nov 04 2005

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x*O(x^n));for(i=1,n, A=1+x*deriv(x*A^3));polcoeff(A,n,x)}

Formula

G.f. A(x) satisfies:
(1) A(x) = 1 + x*d/dx[x*A(x)^3],
(2) [x^n] exp( x*A(x)^3 ) * (n + 1 - A(x)) = 0 for n > 0,
(3) [x^n] exp( n * x*A(x)^3 ) * (2 - A(x)) = 0 for n > 0. - Paul D. Hanna, May 27 2018
From Vaclav Kotesovec, Oct 23 2020: (Start)
a(n) ~ c * 3^n * n! * n^(2/3), where c = 0.2509528330393045762351289...
a(n) ~ A113663(n)/3. (End)
a(0) = 1; a(n) = n * Sum_{i=0..n-1} Sum_{j=0..n-i-1} a(i) * a(j) * a(n-i-j-1). - Ilya Gutkovskiy, Jul 25 2021

A280775 Number of monolithic chord diagrams with n chords.

Original entry on oeis.org

1, 3, 11, 65, 573, 6547, 89639, 1414417, 25148617, 496416579, 10762275539, 254153371121, 6494217863461, 178558132802259, 5257524611172751, 165089697983580641, 5507950426778674129, 194605351254360182403, 7259714571747394749147, 285174902634083710549601
Offset: 1

Views

Author

N. J. A. Sloane, Jan 19 2017

Keywords

Crossrefs

Cf. A000699.

Programs

  • Mathematica
    terms = 20;
    c[_] = 0;
    Do[c[x_] = x + x^2*D[c[x]^2/x, x] + O[x]^(terms+1) // Normal, terms];
    c[x/(1-x)^2] + O[x]^(terms+1) // CoefficientList[#, x]& // Rest (* Jean-François Alcover, Sep 01 2018 *)
  • PARI
    A000699_seq(N) = {
      my(a = vector(N)); a[1] = 1;
      for (n=2, N, a[n] = sum(k=1, n-1, (2*k-1)*a[k]*a[n-k])); a;
    };
    N = 20; Vec(subst(x*Ser(A000699_seq(N)), x, x/(1-x)^2))  \\ Gheorghe Coserea, Jan 22 2017

Formula

G.f.: C(x/(1-x)^2), where C(x) is the g.f. for A000699.

A280780 Numerators of coefficients in asymptotic expansion of S_n (number of simple permutations, A111111).

Original entry on oeis.org

1, -4, 2, -40, -182, -7624, -202652, -14115088, -30800534, -16435427656, -1051314228316, -22675483971248, -6980651581556876, -283099764343781072, -163910651754113166328, -43009695328217994139936, -793529010007812171331166, -20144221762701827321778088, -274475989492312981198559876
Offset: 0

Views

Author

N. J. A. Sloane, Jan 19 2017

Keywords

Examples

			Coefficients are 1, -4, 2, -40/3, -182/3, -7624/15, -202652/45, -14115088/315, -30800534/63, -16435427656/2835, ...
		

Crossrefs

Programs

  • PARI
    seq(N) = {
      my(f = serreverse(x*Ser(vector(N, n, n!))));
      Vec(x* f'/f * exp(2 + (f-x)/(x*f)));
    };
    apply(numerator, seq(20))  \\ Gheorghe Coserea, Jan 22 2017

Formula

A111111(n) ~ n!*exp(-2)*(1 - 4/n + 2/(n*(n-1)) - (40/3)/(n*(n-1)*(n-2)) - ...). - Gheorghe Coserea, Jan 23 2017

Extensions

More terms from Gheorghe Coserea, Jan 22 2017

A280781 Denominators of coefficients in asymptotic expansion of S_n (number of simple permutations, A111111).

Original entry on oeis.org

1, 1, 1, 3, 3, 15, 45, 315, 63, 2835, 14175, 22275, 467775, 1216215, 42567525, 638512875, 638512875, 834978375, 558242685, 1856156927625, 713906510625, 17717861581875, 2143861251406875, 9861761756471625, 147926426347074375, 75472666503609375, 48076088562799171875
Offset: 0

Views

Author

N. J. A. Sloane, Jan 19 2017

Keywords

Comments

Has the same start as A046983 but is a different sequence.

Examples

			Coefficients are 1, -4, 2, -40/3, -182/3, -7624/15, -202652/45, -14115088/315, -30800534/63, -16435427656/2835, ...
		

Crossrefs

Programs

  • PARI
    seq(N) = {
      my(f = serreverse(x*Ser(vector(N, n, n!))));
      Vec(x* f'/f * exp(2 + (f-x)/(x*f)));
    };
    apply(denominator, seq(28))  \\ Gheorghe Coserea, Jan 22 2017

Extensions

More terms from Gheorghe Coserea, Jan 22 2017

A113670 Self-convolution 4th power equals A113664, where a(n) = n*A113664(n-1) for n>=1, with a(0)=1.

Original entry on oeis.org

1, 1, 8, 114, 2224, 53725, 1528200, 49703108, 1813503712, 73247619060, 3242579748000, 156107189374202, 8121266448765936, 454110696002834806, 27165980379205109232, 1731608155057922555400, 117183510733473232477120
Offset: 0

Views

Author

Paul D. Hanna, Nov 04 2005

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x*O(x^n));for(i=1,n, A=1+x*deriv(x*A^4));polcoeff(A,n,x)}

Formula

G.f. A(x) satisfies:
(1) A(x) = 1 + x*d/dx[x*A(x)^4],
(2) [x^n] exp( x*A(x)^4 ) * (n + 1 - A(x)) = 0 for n > 0,
(3) [x^n] exp( n * x*A(x)^4 ) * (2 - A(x)) = 0 for n > 0. - Paul D. Hanna, May 27 2018

A113671 Self-convolution 5th power equals A113665, where a(n) = n*A113665(n-1) for n>=1, with a(0)=1.

Original entry on oeis.org

1, 1, 10, 180, 4440, 135525, 4866156, 199577910, 9174096960, 466435229220, 25973117225450, 1571873641094680, 102741164109622800, 7214517196021315830, 541781124945022815720, 43336510897320779553450
Offset: 0

Views

Author

Paul D. Hanna, Nov 04 2005

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x*O(x^n));for(i=1,n, A=1+x*deriv(x*A^5));polcoeff(A,n,x)}

Formula

G.f. A(x) satisfies:
(1) A(x) = 1 + x*d/dx[x*A(x)^5],
(2) [x^n] exp( x*A(x)^5 ) * (n + 1 - A(x)) = 0 for n > 0,
(3) [x^n] exp( n * x*A(x)^5 ) * (2 - A(x)) = 0 for n > 0. - Paul D. Hanna, May 27 2018
Previous Showing 21-30 of 79 results. Next