cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A167760 The number of permutations w of [n] with no w(i)+1 == w(i+1) (mod n).

Original entry on oeis.org

1, 0, 0, 3, 4, 40, 216, 1603, 13000, 118872, 1202880, 13361403, 161638764, 2115684272, 29792671832, 449145795915, 7217975402768, 123180993414224, 2224874726830656, 42402252681323859, 850380681002034900, 17902407539998807896, 394741856473979171608, 9097740802923890621491
Offset: 0

Views

Author

Joel Barnes (joel(AT)math.washington.edu), Nov 10 2009

Keywords

Comments

a(n) counts rearrangements of n children sitting at distinguishable carousel horses such that no child sits behind the same child after rearrangement. (The case of indistinguishable carousel horses is counted by A000757.)
Obtained from A000757 by multiplying by n; description comes from bijection between cyclic notation and one-line notation of a permutation.
Example and inspiration from S. Billey, University of Washington.

Examples

			For n-3, the a(4) = 4 solutions are, in one-line notation: 4321, 3214, 2143, 1432. w=1324 is not a solution since w(4 + 1) = w(4) + 1 = 1 mod 4.
		

Crossrefs

Programs

  • Magma
    [1] cat [n*((-1)^n + (&+[(-1)^k*Factorial(n)/((n-k)* Factorial(k)): k in [0..n-1]])): n in [1..20]]; // G. C. Greubel, Sep 22 2018
  • Mathematica
    a[n_] = n*((-1)^n + Sum[(-1)^k*n!/((n-k)*k!), {k, 0, n-1}]); a[0]=1; Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Jul 19 2012, after Michael Somos (cf. his formula in A000757) *)
  • PARI
    a(n) = if(n>0,n*(-1)^n + n*sum(k=0, n-1, (-1)^k*binomial(n, k) * (n - k - 1)!), 1) \\ Charles R Greathouse IV, Nov 03 2014
    

Formula

a(n) = n*A000757(n) for n > 0.
a(n) = n*((-1)^n + Sum_{k=0..n-1} (-1)^k*binomial(n, k)*(n-k-1)!).
a(n) = n*(Sum_{j=3..n} (-1)^(n-j))*D(j-1), n >= 3, with the derangements numbers (subfactorials) D(n)=A000166(n).
a(n) ~ (n!/e)*(1 - 1/n + 1/n^3 + 1/n^4 - 2/n^5 - 9/n^6 - 9/n^7 + 50/n^8 + 267/n^9 + 413/n^10 + ...), numerators are A000587. - Vaclav Kotesovec, Apr 11 2012
a(n) = (n-4)*a(n-1) + (4n-8)*a(n-2) + (5n-6)*a(n-3) + (n+6)*a(n-4) - (2n-12)*a(n-5) - (n-5)*a(n-6), for n >= 8. - Vaclav Kotesovec, Apr 11 2012

A027766 a(n) = (n+1)*binomial(n+1,6).

Original entry on oeis.org

6, 49, 224, 756, 2100, 5082, 11088, 22308, 42042, 75075, 128128, 210392, 334152, 515508, 775200, 1139544, 1641486, 2321781, 3230304, 4427500, 5985980, 7992270, 10548720, 13775580, 17813250, 22824711, 28998144, 36549744, 45726736, 56810600, 70120512, 86017008
Offset: 5

Views

Author

Thi Ngoc Dinh (via R. K. Guy)

Keywords

Comments

Number of 8-subsequences of [ 1, n ] with just 1 contiguous pair.
36*a(n) is the number of permutations of (n+1) symbols that 6-commute with an (n+1)-cycle (see A233440 for definition), where 36 = A000757(6). - Luis Manuel Rivera Martínez, Feb 07 2014

Crossrefs

Formula

G.f.: (6+x)*x^5/(1-x)^8.
From Amiram Eldar, Jan 30 2022: (Start)
Sum_{n>=5} 1/a(n) = 3019/300 - Pi^2.
Sum_{n>=5} (-1)^(n+1)/a(n) = Pi^2/2 + 512*log(2)/5 - 22729/300. (End)

A027767 a(n) = (n+1)*binomial(n+1,7).

Original entry on oeis.org

7, 64, 324, 1200, 3630, 9504, 22308, 48048, 96525, 183040, 330616, 572832, 957372, 1550400, 2441880, 3751968, 5638611, 8306496, 12017500, 17102800, 23976810, 33153120, 45262620, 61074000, 81516825, 107707392, 140977584, 182906944, 235358200, 300516480, 380932464
Offset: 6

Views

Author

Thi Ngoc Dinh (via R. K. Guy)

Keywords

Comments

Number of 9-subsequences of [ 1, n ] with just 1 contiguous pair.
229*a(n) is the number of permutations of (n+1) symbols that 7-commute with an (n+1)-cycle (see A233440 for definition), where 229 = A000757(7). - Luis Manuel Rivera Martínez, Feb 07 2014

Crossrefs

Programs

  • Mathematica
    Table[(n+1)Binomial[n+1,7],{n,6,40}] (* or *) LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{7,64,324,1200,3630,9504,22308,48048,96525},30] (* Harvey P. Dale, Mar 13 2016 *)

Formula

G.f.: (7+x)*x^6/(1-x)^9.
From Amiram Eldar, Jan 30 2022: (Start)
Sum_{n>=6} 1/a(n) = 7*Pi^2/6 - 6811/600.
Sum_{n>=6} (-1)^n/a(n) = 7*Pi^2/12 + 2912*log(2)/15 - 252343/1800. (End)

Extensions

Incorrect formula deleted by R. J. Mathar, Feb 13 2016

A027768 a(n) = (n+1)*binomial(n+1,8).

Original entry on oeis.org

8, 81, 450, 1815, 5940, 16731, 42042, 96525, 205920, 413270, 787644, 1436058, 2519400, 4273290, 7034940, 11277222, 17651304, 27039375, 40619150, 59942025, 87026940, 124472205, 175587750, 244550475, 336585600, 458177148, 617310936, 823753700, 1089372240
Offset: 7

Views

Author

Thi Ngoc Dinh (via R. K. Guy)

Keywords

Comments

Number of 10-subsequences of [ 1, n ] with just 1 contiguous pair.
1625*a(n) is the number of permutations of (n+1) symbols that 8-commute with an (n+1)-cycle (see A233440 for definition), where 1625 = A000757(8). - Luis Manuel Rivera Martínez, Feb 07 2014

Crossrefs

Programs

  • Mathematica
    Table[(n+1)Binomial[n+1,8],{n,7,40}] (* Harvey P. Dale, Jul 08 2017 *)
  • PARI
    a(n) = (n+1)*binomial(n+1, 8); \\ Michel Marcus, Jan 31 2014

Formula

G.f.: (8+x)*x^7/(1-x)^10.
From Amiram Eldar, Jan 30 2022: (Start)
Sum_{n>=7} 1/a(n) = 48877/3675 - 4*Pi^2/3.
Sum_{n>=7} (-1)^(n+1)/a(n) = 2*Pi^2/3 + 38656*log(2)/105 - 2884681/11025. (End)

Extensions

Incorrect formula deleted . - R. J. Mathar, Feb 13 2016
Previous Showing 21-24 of 24 results.