cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 87 results. Next

A016915 a(n) = (6*n)^7.

Original entry on oeis.org

0, 279936, 35831808, 612220032, 4586471424, 21870000000, 78364164096, 230539333248, 587068342272, 1338925209984, 2799360000000, 5455160701056, 10030613004288, 17565568854912, 29509034655744
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

G.f.: (279936*(x + 120*x^2 + 1191*x^3 + 2416*x^4 + 1191*x^5 + 120*x^6 + x^7))/ (x-1)^8. - Harvey P. Dale, Jul 20 2011

A017095 a(n) = (8*n + 2)^7.

Original entry on oeis.org

128, 10000000, 612220032, 8031810176, 52523350144, 230539333248, 781250000000, 2207984167552, 5455160701056, 12151280273024, 24928547056768, 47829690000000, 86812553324672, 150363025899136, 250226879128704, 402271083010688, 627485170000000, 953133216331392, 1414067010444416
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A013665, A016819, A017089 (8n+2), A001015 (n^7).

Programs

Formula

From Amiram Eldar, Apr 24 2023: (Start)
a(n) = A017089(n)^7.
a(n) = 2^7*A016819(n).
Sum_{n>=0} 1/a(n) = 61*Pi^7/47185920 + 127*zeta(7)/32768. (End)

A017119 a(n) = (8*n + 4)^7 = 4^7*(2*n + 1)^7.

Original entry on oeis.org

16384, 35831808, 1280000000, 13492928512, 78364164096, 319277809664, 1028071702528, 2799360000000, 6722988818432, 14645194571776, 29509034655744, 55784660123648, 100000000000000, 171382426877952, 282621973446656, 450766669594624, 698260569735168, 1054135040000000, 1555363874947072, 2248392813428736
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = A001015(A017113(n)). - Wesley Ivan Hurt, Mar 10 2014
a(n) = 16384*A016759(n). - Michel Marcus, Mar 11 2014
G.f.: 16384*(x+1)*(x^6 + 2178*x^5 + 58479*x^4 + 201244*x^3 + 58479*x^2 + 2178*x + 1) / (x-1)^8. - Colin Barker, Mar 11 2014
From Amiram Eldar, Apr 25 2023: (Start)
a(n) = 2^7*A016831(n).
Sum_{n>=0} 1/a(n) = 127*zeta(7)/2097152.
Sum_{n>=0} (-1)^n/a(n) = 61*Pi^7/3019898880. (End)

Extensions

More terms from Michel Marcus, Mar 11 2014

A017239 a(n) = (9*n + 6)^7.

Original entry on oeis.org

279936, 170859375, 4586471424, 42618442977, 230539333248, 897410677851, 2799360000000, 7446353252589, 17565568854912, 37725479487783, 75144747810816, 140710042265625, 250226879128704, 425927596977747
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A001015 (n^7), A017233 (9*n+6).

Programs

  • Magma
    [(9*n+6)^7: n in [0..25]]; // Vincenzo Librandi, Jul 25 2011
  • Mathematica
    (9*Range[0,20]+6)^7 (* or *) LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{279936,170859375,4586471424,42618442977,230539333248,897410677851,2799360000000,7446353252589},20] (* Harvey P. Dale, Feb 11 2015 *)

Formula

a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8); a(0)=279936, a(1)=170859375, a(2)=4586471424, a(3)=42618442977, a(4)=230539333248, a(5)=897410677851, a(6)=2799360000000, a(7)=7446353252589. - Harvey P. Dale, Feb 11 2015

A017263 a(n) = (9*n + 8)^7.

Original entry on oeis.org

2097152, 410338673, 8031810176, 64339296875, 319277809664, 1174711139837, 3521614606208, 9095120158391, 20971520000000, 44231334895529, 86812553324672, 160578147647843, 282621973446656, 476837158203125, 775771085481344, 1222791080775407, 1874584905187328
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A001015 (n^7), A017257 (9*n+8).

Programs

  • Magma
    [(9*n+8)^7: n in [0..20]]; // Vincenzo Librandi, Jul 28 2011
  • Mathematica
    (9*Range[0,20]+8)^7 (* or *) LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{2097152,410338673,8031810176,64339296875,319277809664,1174711139837,3521614606208,9095120158391},30] (* Harvey P. Dale, Apr 06 2013 *)

Formula

a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8); a(0)=2097152, a(1)=410338673, a(2)=8031810176, a(3)=64339296875, a(4)=319277809664, a(5)=1174711139837, a(6)=3521614606208, a(7)=9095120158391. - Harvey P. Dale, Apr 06 2013

Extensions

More terms from Harvey P. Dale, Apr 06 2013

A017275 a(n) = (10*n)^7.

Original entry on oeis.org

0, 10000000, 1280000000, 21870000000, 163840000000, 781250000000, 2799360000000, 8235430000000, 20971520000000, 47829690000000, 100000000000000, 194871710000000, 358318080000000, 627485170000000
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = (10n)^7 = A008592(n)^7 = A001015(A008592(n)). - Wesley Ivan Hurt, Feb 10 2014

A017323 a(n) = (10*n + 4)^7.

Original entry on oeis.org

16384, 105413504, 4586471424, 52523350144, 319277809664, 1338925209984, 4398046511104, 12151280273024, 29509034655744, 64847759419264, 131593177923584, 250226879128704, 450766669594624, 775771085481344
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(10*n+4)^7: n in [0..20] ]; // Vincenzo Librandi, Aug 01 2011
    
  • Maple
    A017323:=n->(10*n+4)^7: seq(A017323(n), n=0..30); # Wesley Ivan Hurt, Jan 28 2017
  • Mathematica
    (10*Range[0,20]+4)^7 (* or *) LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{16384,105413504,4586471424,52523350144,319277809664,1338925209984,4398046511104,12151280273024},20] (* Harvey P. Dale, Aug 26 2015 *)
  • PARI
    a(n)=(10*n+4)^7 \\ Charles R Greathouse IV, Jan 29 2017

Formula

a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8); a(0)=16384, a(1)=105413504, a(2)=4586471424, a(3)=52523350144, a(4)=319277809664, a(5)=1338925209984, a(6)=4398046511104, a(7)=12151280273024. - Harvey P. Dale, Aug 26 2015

A017395 a(n) = (11*n)^7.

Original entry on oeis.org

0, 19487171, 2494357888, 42618442977, 319277809664, 1522435234375, 5455160701056, 16048523266853, 40867559636992, 93206534790699, 194871710000000, 379749833583241, 698260569735168, 1222791080775407
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = A001015(A008593(n)). - Michel Marcus, Sep 03 2018

A017659 a(n) = (12n+11)^7.

Original entry on oeis.org

19487171, 3404825447, 64339296875, 506623120463, 2488651484819, 9095120158391, 27136050989627, 69833729609375, 160578147647843, 337931541778439, 662062621900811, 1222791080775407, 2149422977421875
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(12*n+11)^7: n in [0..15]]; // Vincenzo Librandi, May 21 2012
  • Mathematica
    (12Range[0,20]+11)^7 (* Harvey P. Dale, May 16 2012 *)
    LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{19487171,3404825447,64339296875,506623120463,2488651484819,9095120158391,27136050989627,69833729609375},20] (* Harvey P. Dale, May 16 2012 *)

Formula

a(n) = 8*a(n-1)-28*a(n-2)+56*a(n-3)- 70*a(n-4)+ 56*a(n-5)- 28*a(n-6)+ 8*a(n-7)-a(n-8). - Harvey P. Dale, May 16 2012
a(n) = A001015(A017653(n)). - Michel Marcus, Oct 29 2022

A050754 Seventh powers containing no pair of consecutive equal digits.

Original entry on oeis.org

0, 1, 128, 2187, 16384, 78125, 823543, 2097152, 4782969, 19487171, 35831808, 62748517, 105413504, 170859375, 268435456, 893871739, 4586471424, 6103515625, 8031810176, 10460353203, 13492928512, 17249876309, 34359738368
Offset: 0

Views

Author

Patrick De Geest, Sep 15 1999

Keywords

Crossrefs

Previous Showing 61-70 of 87 results. Next