A354847
Number of binary relations on [n] that are idempotent and reduced.
Original entry on oeis.org
1, 2, 6, 32, 318, 5552, 159126, 7137272, 484656318, 48628712192, 7076367228486, 1471524821492552, 432066672598422318, 177354805872559516112, 100928502119652298356726, 79062670900333522721886872, 84733519638342583432646258718, 123582326772837258238596562116512, 244150974458417420635453430918487846
Offset: 0
-
nn = 18; A001035 = Cases[Import["https://oeis.org/A001035/b001035.txt",
"Table"], {, }][[All, 2]];A[x_] = Sum[A001035[[n + 1]] x^n/n!, {n, 0, nn}];
Range[0, nn]! CoefficientList[Series[A[x] Exp[x], {x, 0, nn}], x]
Original entry on oeis.org
1, 1, 2, 1, 12, 6, 1, 86, 108, 24, 1, 840, 2310, 960, 120, 1, 11642, 65700, 42960, 9000, 720, 1, 227892, 2583126, 2510760, 712320, 90720, 5040, 1, 6285806, 142259628, 199424904, 71243760, 11481120, 987840, 40320
Offset: 1
Triangle T(n,k) (with n >= 1 and 1 <= k <= n) begins as follows:
1;
1, 2;
1, 12, 6;
1, 86, 108, 24;
1, 840, 2310, 960, 120;
1, 11642, 65700, 42960, 9000, 720;
1, 227892, 2583126, 2510760, 712320, 90720, 5040;
...
A101620
Decimal encoding of digraph topologies.
Original entry on oeis.org
1, 3, 9, 11, 13, 15, 129, 131, 133, 137, 139, 141, 143, 145, 153, 161, 163, 165, 171, 175, 177, 179, 187, 193, 195, 197, 205, 207, 209, 213, 221, 241, 243, 245, 255
Offset: 1
Let a = 2, b = 4, c = 16, d = 256, ...
a(19) = 171 because we can map { }, a, ab, ac, abc to 1 + 2 + 8 + 32 + 128
Viewed as an array the table begins
1
3
9 11 13 15
129 131 133 137 139 141 143 145 153 161 163 165 171 175 177 ...
with respectively 1 1 4 29 355 ... (A000798) entries on each row.
Original entry on oeis.org
1, 2, 6, 35, 390, 7332, 216859, 9752100, 652531454, 63912820877, 9040966693920, 1825887005430112, 521181458071204133, 208402575114740157174, 115825454552169007964634, 88852094573138413500449755, 93499965506283177978710943850, 134231450058844163850300579669696, 261626767193693218968916427480786899
Offset: 0
Original entry on oeis.org
1, 2, 4, 10, 46, 426, 6816, 164778, 5561666, 248740730, 14187451940, 1002045820690, 85615117761142, 8682866612715706, 1029036311254555560, 140656568448867136650, 21929110364021381812410, 3862525357012048643891882, 762298016068721625860646524
Offset: 0
A266875
Number of partially ordered sets ("posets") with n labeled elements, modulo n.
Original entry on oeis.org
0, 1, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 4, 3, 1, 9, 1
Offset: 1
a(4) = A001035(4) mod 4 = 219 mod 4 = 3.
a(5) = A001035(5) mod 5 = 4231 mod 5 = 1.
a(6) = A001035(6) mod 6 = 130023 mod 6 = 3.
a(7) = A001035(7) mod 7 = 6129859 mod 7 = 1.
A284276
Number of event structures with n labeled elements.
Original entry on oeis.org
1, 4, 41, 916, 41099, 3528258, 561658287
Offset: 1
An event structure is given by a poset and a conflict relation (denoted #) on it. The conflict relation is irreflexive and symmetric, and must propagate over the order: a<=b and a#c imply b#c.
For n=2, (i.e., two elements a and b), there are three possible posets: a<=b, b<=a, and neither of the two. For the first two cases, only the empty conflict is possible. For the third case, you can have either the empty conflict relation, or a#b. Hence the total number of event structures is 4.
- Juliana Bowles and Marco B. Caminati, A Verified Algorithm Enumerating Event Structures, arXiv:1705.07228 [cs.LO], 2017.
- Marco B. Caminati, Isabelle/HOL code
- Marco B. Caminati and Juliana K. F. Bowles, Representation Theorems Obtained by Mining across Web Sources for Hints, Lancaster Univ. (UK, 2022).
- M. Nielsen, G. Plotkin, and G. Winskel, Petri nets, event structures and domains, part I, Theoretical Computer Science 13, no. 1 (1981): 85-108.
- G. Winskel and M. Nielsen, Models for concurrency, DAIMI Report Series 21, no. 429 (1992) (revised version).
Cf.
A001035 (generating all the event structures entails generating all the posets),
A000798 (to generate all the posets we preemptively generated all the quasi-orders).
A284762
Total number of subsets of X that are open and closed and connected summed over all distinct topological spaces X that can be placed on an n-set.
Original entry on oeis.org
1, 2, 9, 69, 852, 16363, 479435, 21150888, 1388124543, 133822887673, 18707633394606, 3745998552621317, 1062675319801676431, 423005074717335908762, 234301896939296139079453, 179277553685814268284430793, 188286118651948743843774496644, 269901723843412313246289232355847, 525443899393186663528068248469425039
Offset: 0
a(2) = 9. Let X = {a,b}. There are four distinct topologies (A000798) that can be placed on X: {{},X} {{},{a},X} {{}, {b},X} {{},{a},{b},X}. These topologies have 2 + 2 + 2 + 3 sets respectively that are open and closed and connected.
A340318
Minimum size of a partial order that contains all partial orders of size n.
Original entry on oeis.org
0, 1, 3, 5, 8, 11, 16
Offset: 0
a(2) = 3 because there are 2 nonisomorphic posets on two elements, and both embed into the poset of three elements {a, b, c} with ordering a < b (and other pairs are incomparable).
a(3) = 5 because all posets on three elements can be embedded into {a, b, c, d, e} with ordering a < d, b < c < d, and b < e.
A355783
Triangular array read by rows. T(n,k) is the number of labeled transitive relations on [n] that have exactly k symmetric points.
Original entry on oeis.org
1, 2, 0, 12, 0, 1, 152, 0, 18, 1, 3504, 0, 456, 24, 10, 135392, 0, 17520, 760, 600, 31, 8321472, 0, 1015440, 35040, 40560, 2316, 361, 784621952, 0, 87375456, 2369360, 3615360, 185556, 52682, 2164, 110521185024, 0, 10984707328, 233001216, 441616000, 19052992, 7723408, 384992, 32663
Offset: 0
1,
2, 0,
12, 0, 1,
152, 0, 18, 1,
3504, 0, 456, 24, 10,
135392, 0, 17520, 760, 600, 31
-
nn = 18; A001035 = Cases[Import["https://oeis.org/A001035/b001035.txt",
"Table"], {, }][[All, 2]]; A[x_] = Sum[A001035[[n + 1]] x^n/n!, {n, 0, nn}];
Table[Take[(Range[0, nn]! CoefficientList[Series[A[Exp[y x] - 1 - y x + x + x], {x, 0, nn}], {x,y}])[[i]], i], {i, 1, nn}] // Grid
Comments