cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 117 results. Next

A278949 Expansion of Product_{k>=1} 1/(1 - x^(k*(2*k-1))).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 9, 9, 11, 11, 11, 12, 13, 13, 15, 15, 15, 16, 17, 17, 19, 20, 20, 23, 24, 24, 26, 27, 27, 30, 31, 31, 33, 34, 35, 38, 40, 40, 44, 45, 46, 49, 51, 51, 56, 57, 58, 61, 63, 64, 69, 72, 73, 78, 80, 81, 86, 89, 90, 96, 98, 99, 105, 108, 110, 116, 120, 121, 130
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 02 2016

Keywords

Comments

Number of partitions of n into nonzero hexagonal numbers (A000384).

Examples

			a(7) = 2 because we have [6, 1] and [1, 1, 1, 1, 1, 1, 1].
		

Crossrefs

Programs

  • Maple
    h:= proc(n) option remember; `if`(n<1, 0, (t->
          `if`(t*(2*t-1)>n, t-1, t))(1+h(n-1)))
        end:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1)+(t-> b(n-t, min(i, h(n-t))))(i*(2*i-1))))
        end:
    a:= n-> b(n, h(n)):
    seq(a(n), n=0..100);  # Alois P. Heinz, Dec 28 2018
  • Mathematica
    nmax=90; CoefficientList[Series[Product[1/(1 - x^(k (2 k - 1))), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} 1/(1 - x^(k*(2*k-1))).

A280951 Expansion of Product_{k>=0} 1/(1 - x^(2*k*(k+1)+1)).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 5, 5, 5, 6, 6, 7, 7, 7, 8, 8, 10, 11, 11, 12, 12, 14, 15, 15, 16, 16, 18, 19, 19, 21, 22, 24, 26, 26, 28, 29, 31, 33, 33, 35, 36, 39, 42, 43, 45, 47, 50, 53, 54, 56, 58, 61, 65, 66, 69, 72, 76, 81, 83, 86, 89, 93, 98, 100, 103, 107, 112, 118, 121, 125, 130, 136, 142, 146
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 11 2017

Keywords

Comments

Number of partitions of n into centered square numbers (A001844).

Examples

			a(10) = 3 because we have [5, 5], [5, 1, 1, 1, 1, 1] and [1, 1, 1, 1, 1, 1, 1, 1, 1, 1].
		

Crossrefs

Programs

  • Mathematica
    nmax = 82; CoefficientList[Series[Product[1/(1 - x^(2 k (k + 1) + 1)), {k, 0, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=0} 1/(1 - x^(2*k*(k+1)+1)).

A292520 Expansion of Product_{k>=1} 1/(1 + x^(k^2)).

Original entry on oeis.org

1, -1, 1, -1, 0, 0, 0, 0, 1, -2, 2, -2, 1, 0, 0, 0, 0, -1, 2, -2, 2, -1, 0, 0, 0, -1, 2, -3, 3, -2, 1, 0, 1, -2, 3, -4, 3, -2, 1, 0, 1, -2, 3, -4, 3, -2, 1, 0, 0, -2, 4, -5, 6, -4, 2, -1, 0, -2, 5, -7, 8, -6, 3, -1, 0, -1, 3, -6, 7, -6, 4, -1, 1, -1, 3, -6, 7, -8, 6, -3, 2, -4, 6, -9, 11, -9, 7, -4, 1, -3, 7
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 18 2017

Keywords

Comments

Convolution inverse of A033461.
The difference between the number of partitions of n into an even number of squares and the number of partitions of n into an odd number of squares.

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[1/(1 + x^(k^2)), {k, 1, Floor[Sqrt[nmax]] + 1}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 19 2017 *)

Formula

G.f.: Product_{k>=1} 1/(1 + x^(k^2)).
a(n) ~ (-1)^n * exp(3 * Pi^(1/3) * Zeta(3/2)^(2/3) * n^(1/3) / 2^(7/3)) * Zeta(3/2)^(1/3) / (2^(5/3) * sqrt(3) * Pi^(1/3) * n^(5/6)). - Vaclav Kotesovec, Sep 19 2017
a(n) = Sum_{k=0..n} (-1)^k * A243148(n,k). - Alois P. Heinz, Jul 25 2022

A279012 Expansion of Product_{k>=1} 1/(1 - x^(k*(5*k-3)/2)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 9, 10, 11, 11, 11, 12, 12, 13, 14, 15, 15, 15, 16, 16, 17, 18, 19, 19, 20, 21, 22, 24, 25, 26, 26, 27, 28, 29, 31, 32, 33, 33, 34, 35, 37, 39, 41, 42, 43, 45, 46, 48, 50, 52, 53, 54, 56, 58, 60, 62, 64, 65, 67, 69, 72, 75, 78
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 03 2016

Keywords

Comments

Number of partitions of n into nonzero heptagonal numbers (A000566).

Examples

			a(8) = 2 because we have [7, 1] and [1, 1, 1, 1, 1, 1, 1, 1].
		

Crossrefs

Programs

  • Maple
    h:= proc(n) option remember; `if`(n<1, 0, (t->
          `if`(t*(5*t-3)/2>n, t-1, t))(1+h(n-1)))
        end:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1)+(t-> b(n-t, min(i, h(n-t))))(i*(5*i-3)/2)))
        end:
    a:= n-> b(n, h(n)):
    seq(a(n), n=0..100);  # Alois P. Heinz, Dec 28 2018
  • Mathematica
    nmax=90; CoefficientList[Series[Product[1/(1 - x^(k (5 k - 3)/2)), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} 1/(1 - x^(k*(5*k-3)/2)).

A285799 Number of partitions of n into parts with an odd number of distinct prime divisors.

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 3, 4, 6, 7, 9, 12, 15, 19, 23, 29, 37, 44, 54, 66, 80, 96, 115, 138, 165, 196, 231, 275, 322, 380, 444, 520, 608, 706, 821, 952, 1102, 1272, 1467, 1688, 1941, 2226, 2549, 2917, 3329, 3798, 4324, 4918, 5587, 6337, 7180, 8125, 9184, 10369, 11695, 13174, 14828, 16671, 18723, 21011, 23551
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 26 2017

Keywords

Examples

			a(7) = 4 because we have [7], [5, 2], [4, 3] and [3, 2, 2].
		

Crossrefs

Cf. A001156 (number of partitions into parts with an odd number of divisors), A030230, A285798.

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[Product[1/(1 - Boole[OddQ[PrimeNu[k]]] x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} 1/(1 - x^A030230(k)).

A291655 Expansion of Product_{k>=1} 1/(1-x^(k^2))^(k^2).

Original entry on oeis.org

1, 1, 1, 1, 5, 5, 5, 5, 15, 24, 24, 24, 44, 80, 80, 80, 131, 221, 266, 266, 386, 566, 746, 746, 990, 1474, 1924, 2089, 2529, 3709, 4609, 5269, 6130, 8576, 11096, 12746, 14937, 19397, 25697, 28997, 34111, 43135, 56365, 65905, 76219, 95770, 120070, 144370, 163661
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 28 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[1/(1-x^(k^2))^(k^2), {k,1,nmax}], {x,0,nmax}], x]

Formula

log(a(n)) ~ 5 * Pi^(1/5) * Zeta(5/2)^(2/5) * n^(3/5) / (2^(6/5) * 3^(3/5)).

A294297 Integers with precisely five partitions into sums of four squares of nonnegative numbers.

Original entry on oeis.org

50, 52, 54, 58, 70, 73, 74, 75, 76, 84, 85, 86, 89, 91, 93, 101, 103, 109, 111, 113, 127, 131, 140, 142, 143, 151, 167, 191, 200, 208, 216, 232, 280, 296, 304, 336, 344, 560, 568, 800, 832, 864, 928, 1120, 1184, 1216, 1344, 1376, 2240, 2272, 3200, 3328, 3456
Offset: 1

Views

Author

Robert Price, Oct 27 2017

Keywords

Comments

A002635(a(n)) = 5.

Crossrefs

Programs

  • Mathematica
    f[n_] := Length@ PowersRepresentations[n, 4, 2]; Select[ Range@ 3500, f@# == 5 &] (* Robert G. Wilson v, Oct 27 2017 *)

A300974 a(n) = [x^n] Product_{k>=1} 1/(1 - x^(k^2))^n.

Original entry on oeis.org

1, 1, 3, 10, 39, 151, 588, 2304, 9111, 36307, 145553, 586246, 2370264, 9614242, 39105580, 159444160, 651468967, 2666771488, 10934393619, 44899828056, 184616878289, 760010818689, 3132147583744, 12921037206764, 53351800567200, 220478125956426, 911839751015196, 3773836780169050
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 17 2018

Keywords

Comments

Number of partitions of n into squares of n kinds.

Crossrefs

Programs

  • Maple
    a:= proc(m) option remember; local b; b:= proc(n, i)
          option remember; `if`(n=0, 1, `if`(i<1, 0, add(
          binomial(m+j-1, j)*b(n-i^2*j, i-1), j=0..n/i^2)))
          end: b(n, isqrt(n))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Mar 17 2018
  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 - x^k^2)^n, {k, 1, n}], {x, 0, n}], {n, 0, 27}]

Formula

From Vaclav Kotesovec, Mar 23 2018: (Start)
a(n) ~ c * d^n / sqrt(n), where
d = 4.216358447600641565890184638418336163396695730036... and
c = 0.26442245016754864773722176155288663999776... (End)

A339364 Number of partitions of n into an even number of squares.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 1, 1, 2, 1, 3, 1, 3, 3, 3, 3, 4, 4, 6, 4, 7, 6, 7, 7, 8, 9, 11, 9, 13, 12, 14, 14, 16, 16, 20, 17, 23, 22, 25, 25, 28, 29, 33, 31, 37, 38, 41, 42, 45, 48, 54, 51, 61, 60, 67, 67, 72, 76, 84, 81, 93, 93, 102, 104, 110, 117, 125, 125, 139, 140, 153
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 01 2020

Keywords

Examples

			a(10) = 3 because we have [9, 1], [4, 4, 1, 1] and [1, 1, 1, 1, 1, 1, 1, 1, 1, 1].
		

Crossrefs

Programs

  • Mathematica
    nmax = 70; CoefficientList[Series[(1/2) (Product[1/(1 - x^(k^2)), {k, 1, Floor[nmax^(1/2)] + 1}] + Product[1/(1 + x^(k^2)), {k, 1, Floor[nmax^(1/2)] + 1}]), {x, 0, nmax}], x]

Formula

G.f.: (1/2) * (Product_{k>=1} 1 / (1 - x^(k^2)) + Product_{k>=1} 1 / (1 + x^(k^2))).
a(n) = (A001156(n) + A292520(n)) / 2.

A339365 Number of partitions of n into an odd number of squares.

Original entry on oeis.org

0, 1, 0, 1, 1, 1, 1, 1, 1, 3, 1, 3, 2, 3, 3, 3, 4, 5, 4, 6, 5, 7, 7, 7, 8, 10, 9, 12, 10, 14, 13, 14, 15, 18, 17, 21, 20, 24, 24, 25, 27, 31, 30, 35, 34, 40, 40, 42, 45, 50, 50, 56, 55, 64, 65, 68, 72, 78, 79, 88, 85, 99, 99, 105, 110, 118, 122, 131, 132, 146, 149
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 01 2020

Keywords

Examples

			a(9) = 3 because we have [9], [4, 4, 1] and [1, 1, 1, 1, 1, 1, 1, 1, 1].
		

Crossrefs

Programs

  • Mathematica
    nmax = 70; CoefficientList[Series[(1/2) (Product[1/(1 - x^(k^2)), {k, 1, Floor[nmax^(1/2)] + 1}] - Product[1/(1 + x^(k^2)), {k, 1, Floor[nmax^(1/2)] + 1}]), {x, 0, nmax}], x]

Formula

G.f.: (1/2) * (Product_{k>=1} 1 / (1 - x^(k^2)) - Product_{k>=1} 1 / (1 + x^(k^2))).
a(n) = (A001156(n) - A292520(n)) / 2.
Previous Showing 41-50 of 117 results. Next