cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 29 results. Next

A182913 Denominators of an asymptotic series for the Gamma function (G. Nemes).

Original entry on oeis.org

1, 1, 144, 12960, 207360, 2612736, 9405849600, 18811699200, 1083553873920, 4022693756928000, 300361133850624000, 210853515963138048000, 151814531493459394560000, 151814531493459394560000, 21861292535058152816640000
Offset: 0

Views

Author

Peter Luschny, Feb 09 2011

Keywords

Comments

G_n = A182912(n)/A182913(n). These rational numbers provide the coefficients for an asymptotic expansion of the Gamma function.

Examples

			G_0 = 1, G_1 = 0, G_2 = 1/144, G_3 = -1/12960.
		

References

  • G. Nemes, More Accurate Approximations for the Gamma Function,
  • Thai Journal of Mathematics Volume 9(1) (2011), 21-28.

Crossrefs

Programs

  • Maple
    # See A182912 for G(n).
    A182913 := n -> denom(G(n)); seq(A182913(i),i=0..15);
  • Mathematica
    G[n_] := G[n] = Module[{j, J}, J[k_] := J[k] = Module[{j}, If[k == 0, 1, (J[k-1]/k - Sum[J[k-j]*J[j]/(j+1), {j, 1, k-1}])/(1+1/(k+1))]]; Sum[J[2*j]*2^j*6^(j-n)*Gamma[1/2+j]/(Gamma[n-j+1]*Gamma[1/2+j-n]), {j, 0, n}] - Sum[G[j]*(-4)^(j-n)*Gamma[n]/(Gamma[n-j+1]*Gamma[j]), {j, 1, n-1}]]; A182913[n_] := Denominator[G[n]]; Table[A182913[i], {i, 0, 15}] (* Jean-François Alcover, Jan 06 2014, translated from Maple *)

Formula

Gamma(x+1) ~ x^x e^(-x) sqrt(2Pi (x+1/6)) Sum_{n>=0} G_n / (x+1/4)^n.

A182935 Numerators of an asymptotic series for the factorial function (Stirling's formula with half-shift).

Original entry on oeis.org

1, -1, 1, 1003, -4027, -5128423, 168359651, 68168266699, -587283555451, -221322134443186643, 3253248645450176257, 52946591945344238676937, -3276995262387193162157789, -6120218676760621380031990351
Offset: 0

Views

Author

Peter Luschny, Feb 24 2011

Keywords

Comments

G_n = A182935(n)/A144618(n). These rational numbers provide the coefficients for an asymptotic expansion of the factorial function.
The relationship between these coefficients and the Bernoulli numbers are due to De Moivre, 1730 (see Laurie).

Examples

			G_0 = 1, G_1 = -1/24, G_2 = 1/1152, G_3 = 1003/414720.
		

Crossrefs

Programs

  • Maple
    G := proc(n) option remember; local j,R;
    R := seq(2*j,j=1..iquo(n+1,2));
    `if`(n=0,1,add(bernoulli(j,1/2)*G(n-j+1)/(n*j),j=R)) end:
    A182935 := n -> numer(G(n)); seq(A182935(i),i=0..15);
  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[ BernoulliB[j, 1/2]*a[n-j+1]/(n*j), {j, 2, n+1, 2}]; Table[a[n] // Numerator, {n, 0, 15}] (* Jean-François Alcover, Jul 26 2013, after Maple *)

Formula

z! ~ sqrt(2 Pi) (z+1/2)^(z+1/2) e^(-z-1/2) Sum_{n>=0} G_n / (z+1/2)^n.

A318713 Numerator of the coefficient of z^(-2*n) in the Stirling-like asymptotic expansion of Product_{z=1..n} z^(z^3).

Original entry on oeis.org

1, -1, 1513, -127057907, 7078687551763, -1626209947417109183, 25620826938516570309695021, -67861652779316417663427293866727, 11129902336987204608540488473560076627, -2992048697379116617363098289271338606184087563, 593799837691907572156765292649932318031816367209421
Offset: 0

Views

Author

Seiichi Manyama, Sep 01 2018

Keywords

Comments

1^(1^3)*2^(2^3)*...*n^(n^3) ~ A_3*n^(n^4/4+n^3/2+n^2/4-1/120)*exp(-n^4/16+n^/12)*(Sum_{k>=0} b(k)/n^k)^n, where A_3 is the third Bendersky constant.
a(n) is the numerator of b(n).

Examples

			1^(1^3)*2^(2^3)*...*n^(n^3) ~ A_3*n^(n^4/4+n^3/2+n^2/4-1/120)*exp(-n^4/16+n^/12)*(1 - 1/(5040*n^2) + 1513/(50803200*n^4) - 127057907/(8449588224000*n^6) + 7078687551763/(442893616349184000*n^8) - 1626209947417109183/(55804595659997184000000*n^10) + ... ).
		

Crossrefs

Product_{z=1..n} z^(z^m): A001163/A001164 (m=0), A143475/A143476 (m=1), A317747/A317796 (m=2), A318713/A318714 (m=3).
Cf. A243263 (A_3).

Formula

Let B_n be the Bernoulli number, and define the sequence {c_n} by the recurrence
c_0 = 1, c_n = (-3/n) * Sum_{k=0..n-1} B_{2*n-2*k+4}*c_k/((2*n-2*k+1)*(2*n-2*k+2)*(2*n-2*k+3)*(2*n-2*k+4)) for n > 0.
a(n) is the numerator of c_n.

A318714 Denominator of the coefficient of z^(-2*n) in the Stirling-like asymptotic expansion of Product_{z=1..n} z^(z^3).

Original entry on oeis.org

1, 5040, 50803200, 8449588224000, 442893616349184000, 55804595659997184000000, 315568291905804875857920000000, 211531737430299124385080934400000000, 6522145617145034649275530739712000000000, 254485460571619683408716971558739902464000000000
Offset: 0

Views

Author

Seiichi Manyama, Sep 01 2018

Keywords

Comments

1^(1^3)*2^(2^3)*...*n^(n^3) ~ A_3*n^(n^4/4+n^3/2+n^2/4-1/120)*exp(-n^4/16+n^/12)*(Sum_{k>=0} b(k)/n^k)^n, where A_3 is the third Bendersky constant.
a(n) is the denominator of b(n).

Examples

			1^(1^3)*2^(2^3)*...*n^(n^3) ~ A_3*n^(n^4/4+n^3/2+n^2/4-1/120)*exp(-n^4/16+n^/12)*(1 - 1/(5040*n^2) + 1513/(50803200*n^4) - 127057907/(8449588224000*n^6) + 7078687551763/(442893616349184000*n^8) - 1626209947417109183/(55804595659997184000000*n^10) + ... ).
		

Crossrefs

Product_{z=1..n} z^(z^m): A001163/A001164 (m=0), A143475/A143476 (m=1), A317747/A317796 (m=2), A318713/A318714 (m=3).
Cf. A243263 (A_3).

Formula

Let B_n be the Bernoulli number, and define the sequence {c_n} by the recurrence
c_0 = 1, c_n = (-3/n) * Sum_{k=0..n-1} B_{2*n-2*k+4}*c_k/((2*n-2*k+1)*(2*n-2*k+2)*(2*n-2*k+3)*(2*n-2*k+4)) for n > 0.
a(n) is the denominator of c_n.

A321938 Denominators of the Maclaurin coefficients of exp(1/x - 1/(exp(x)-1) - 1/2).

Original entry on oeis.org

1, 12, 288, 51840, 2488320, 209018880, 75246796800, 180592312320, 86684309913600, 73557828698112000, 86504006548979712000, 13494625021640835072000, 9716130015581401251840000, 23318712037395363004416000, 559649088897488712105984000
Offset: 0

Views

Author

Richard P. Brent, Nov 22 2018

Keywords

Comments

The Maclaurin coefficients arise in a theorem of Slater (1960) on asymptotic expansions of confluent hypergeometric functions, see Sec. 3.1 of the paper by Temme (2013), and Theorem 5 of the preprint by Brent et al. (2018).
The sequence is related to A001164 but differs from the 7th term.

Examples

			For n=0..3 the Maclaurin coefficients are 1, -1/12, 1/288, 67/61840.
		

References

  • L. J. Slater, Confluent Hypergeometric Functions, Cambridge University Press, 1960.

Crossrefs

Numerators are A321937.

Programs

  • Maple
    A321938List := proc(len) local mu, ser;
    mu  := h -> sum(bernoulli(2*k)/(2*k)!*h^(2*k-1), k=1..infinity);
    ser := series(exp(mu(h)), h, len+2): seq(denom(coeff(ser,h,n)), n=0..len) end:
    A321938List(14); # Peter Luschny, Dec 05 2018
  • Mathematica
    Exp[1/x - 1/(Exp[x]-1) - 1/2] + O[x]^20 // CoefficientList[#, x]& // Denominator (* Jean-François Alcover, Jan 21 2019 *)
  • PARI
    x='x+O('x^25); apply(denominator, Vec(exp(1/x - 1/(exp(x)-1) - 1/2)))  \\ Joerg Arndt, Dec 05 2018

A362113 Truncate Stirling's asymptotic series for 1! after n terms and round to the nearest integer.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 12, 13, -131, -144, 1878, 2047, -31243, -34023, 603493, 656720, -13392786, -14565501, 338472513, 367934625, -9665776360, -10502979551, 309738982467, 336455915833, -11068897604205, -12020303454921, 438669580592210
Offset: 0

Views

Author

N. J. A. Sloane, Apr 15 2023

Keywords

Comments

Stirling's series for N! is an asymptotic expansion. It does not converge to N! as more terms are included in the sum.

Crossrefs

Programs

  • Maple
    h := proc(k) option remember; local j; `if`(k=0, 1, (h(k-1)/k-add((h(k-j)*h(j))/(j+1), j=1..k-1))/(1+1/(k+1))) end:
    StirlingAsympt := proc(n) option remember; h(2*n)*2^n*pochhammer(1/2, n) end:
    c := n -> StirlingAsympt(n); # # Peter Luschny, Feb 08 2011 (This is A001163(n)/A001164(n)).
    S:=proc(k,N) local i; global c; sqrt(2*Pi)*N^(N+1/2)*exp(-N)*add(c(i)/N^i,i=0..k); end;
    Digits:=200;
    T:=proc(N,M) local k; [seq(round(evalf(S(k,N))),k=0..M)]; end;
    T(1,40);

Formula

In general, we take Stirling's asymptotic series for N! (N >= 1, with N = 1 for the present sequence) and truncate it after n terms. This has the value
sqrt(2*Pi)*N^(N+1/2)*exp(-N)*(Sum_{j = 0..n} c(j)/N^j),
where c(j) = A001163(j)/A001164(j).
We then round this to the nearest integer to get a(n).

A362116 Truncate Stirling's asymptotic series for 4! after n terms and round to the nearest integer.

Original entry on oeis.org

24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 23, 23, 28, 28, -6, -7, 271, 276, -2098, -2148, 19280, 19727, -184017, -188262, 1850289, 1892769, -19543114, -19989790, 216612777, 221542994
Offset: 0

Views

Author

N. J. A. Sloane, Apr 15 2023

Keywords

Comments

See A362113 for further information.

Crossrefs

Extensions

More than the usual number of terms are shown in order to demonstrate the divergence of the sequence.

A097301 Numerators of rationals used in the Euler-Maclaurin type derivation of Stirling's formula for N!.

Original entry on oeis.org

1, -1, 2, -3, 3360, -995040, 39916800, -656924748480, 1214047650816000, -169382556838010880, 15749593891765493760000, -4054844479616799289344000, 34017686450062663131463680000, -11402327189708082115897599590400000, 189528830020089532044244068728832000000
Offset: 0

Views

Author

Wolfdieter Lang, Aug 13 2004

Keywords

Comments

Denominators are given in A097302.
The e.g.f. sum( A(2*n+1)*(x^(2*n+1))/(2*n+1)!,n=0..infinity) appears in the Stirling-formula derivation for N! with x=1/N in the exponent and the formula for A(2*n+1):=a(n)/A097302(n), n>=0, is given below. For Stirling's formula see A001163 and A001164.
The rationals A(2*n+1) = B(n):= (2*n)!*Bernoulli(2*(n+1))/(2*(n+1)) = a(n)/A097304(n) with A(2*n):=0 are the logarithmic transform of the rational sequence {A001163(n)/A001164(n)} (inverse of the sequence transform EXP)

References

  • Julian Havil, Gamma, Exploring Euler's Constant, Princeton University Press, Princeton and Oxford, 2003, p. 87.

Formula

a(n)=numerator(B(n)) with B(n):=Bernoulli(2*n+2)*(2*n)!/(2*n+2) and Bernoulli(n)= A027641(n)/A027642(n).

A097303 Denominators in Stirling's asymptotic series.

Original entry on oeis.org

1, 12, 144, 8640, 103680, 1741824, 104509440, 179159040, 2149908480, 1418939596800, 23838185226240, 338068808663040, 20284128519782400, 18723810941337600, 32097961613721600, 229179445921972224000
Offset: 0

Views

Author

Wolfdieter Lang, Aug 13 2004

Keywords

Comments

Numerators coincide with the numbers depicted in A001163 but differ for the first time at entry nr. 33. See the W. Lang link.
Stirling's formula for Gamma(z) (|arg(z)| < Pi) uses the asymptotic series Sum_{k>=0} (N(k)/a(k))*((1/z)^k)/k!. For N(k) see the W. Lang link.

Crossrefs

Cf. A001163, A001164 (Stirling formula with further links and references.).

Programs

  • Mathematica
    max = 15; se = Series[(E^x*Sqrt[1/x]*Gamma[x+1])/(x^x*Sqrt[2*Pi]), {x, Infinity, max}]; Denominator[ CoefficientList[ se /. x -> 1/x, x]*Range[0, max]!] (* Jean-François Alcover, Nov 03 2011 *)

Formula

a(n) = denominator(s(n)), where the signed rationals s(n) are the coefficients of ((1/z)^k)/k! in the asymptotic series appearing in Stirling's formula for Gamma(z).

A122252 Binet's factorial series. Numerators of the coefficients of a convergent series for the logarithm of the Gamma function.

Original entry on oeis.org

1, 1, 59, 29, 533, 1577, 280361, 69311, 36226519, 7178335, 64766889203, 32128227179, 459253205417, 325788932161, 2311165698322609, 287144996287039, 1215091897184850539, 402833263943353393, 476099430416027805187, 236881416523193720213, 650730651653461090091101
Offset: 1

Views

Author

Paul Drees (zemyla(AT)gmail.com), Aug 27 2006

Keywords

Examples

			Rational sequence starts: 1/12, 1/12, 59/360, 29/60, 533/280, 1577/168, 280361/5040, ...
c(1) = Integral_{x=0..1} x*(x - 1/2) / 1 = Integral_{x=0..1} (x^2 - x/2) = (x^3/3 - x^2/4) | {x, 0, 1} = 1/12.
		

Crossrefs

Cf. A122253 (denominators), A001163, A001164.

Programs

  • Maple
    r := n -> add((-1)^(n-j)*Stirling1(n,j)*j/((j+1)*(j+2)), j=1..n)/(2*n):
    a := n -> numer(r(n)); seq(a(n), n=1..21); # Peter Luschny, Sep 22 2021
  • Mathematica
    Rising[z_, n_Integer/;n>0] := z Rising[z + 1, n - 1]; Rising[z_, 0] := 1; c[n_Integer/;n>0] := Integrate[Rising[x, n] (x - 1/2), {x, 0, 1}] / n; Numerator@ Array[c, 19] (* updated by Robert G. Wilson v, Aug 15 2015 *)
  • PARI
    a(n) = numerator(sum(j=1, n, (-1)^(n-j)*stirling(n,j,1)*j/((j+1)*(j+2)))/(2*n)); \\ Michel Marcus, Sep 22 2021

Formula

a(n) = numerator(c(n)), where c(n) are given by Binet's formulas:
log Gamma z = (z - 1/2) log z - z + log(2*Pi)/2 + Sum_{n >= 1} c(n)/(z+1)^(n), where z^(n) is the rising factorial.
c(n) = (1/n)*Integral_{x=0..1} x^(n)*(x - 1/2).
a(n) = numerator((1/2n)*Sum_{j=1..n} (-1)^(n-j)*Stirling1(n,j)*j/((j+1)*(j+2))). - Peter Luschny, Sep 22 2021

Extensions

Edited by Peter Luschny, Sep 22 2021
Previous Showing 11-20 of 29 results. Next