A182913 Denominators of an asymptotic series for the Gamma function (G. Nemes).
1, 1, 144, 12960, 207360, 2612736, 9405849600, 18811699200, 1083553873920, 4022693756928000, 300361133850624000, 210853515963138048000, 151814531493459394560000, 151814531493459394560000, 21861292535058152816640000
Offset: 0
Examples
G_0 = 1, G_1 = 0, G_2 = 1/144, G_3 = -1/12960.
References
- G. Nemes, More Accurate Approximations for the Gamma Function,
- Thai Journal of Mathematics Volume 9(1) (2011), 21-28.
Links
- Peter Luschny, Approximation Formulas for the Factorial Function.
Programs
-
Maple
# See A182912 for G(n). A182913 := n -> denom(G(n)); seq(A182913(i),i=0..15);
-
Mathematica
G[n_] := G[n] = Module[{j, J}, J[k_] := J[k] = Module[{j}, If[k == 0, 1, (J[k-1]/k - Sum[J[k-j]*J[j]/(j+1), {j, 1, k-1}])/(1+1/(k+1))]]; Sum[J[2*j]*2^j*6^(j-n)*Gamma[1/2+j]/(Gamma[n-j+1]*Gamma[1/2+j-n]), {j, 0, n}] - Sum[G[j]*(-4)^(j-n)*Gamma[n]/(Gamma[n-j+1]*Gamma[j]), {j, 1, n-1}]]; A182913[n_] := Denominator[G[n]]; Table[A182913[i], {i, 0, 15}] (* Jean-François Alcover, Jan 06 2014, translated from Maple *)
Formula
Gamma(x+1) ~ x^x e^(-x) sqrt(2Pi (x+1/6)) Sum_{n>=0} G_n / (x+1/4)^n.
Comments