cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 78 results. Next

A140803 Numbers of the form (2^(p*q)-1) /((2^p-1)*(2^q-1)), where p>q are primes.

Original entry on oeis.org

3, 11, 43, 151, 683, 2359, 2731, 43691, 174763, 599479, 2796203, 8727391, 9588151, 178956971, 715827883, 2454285751, 39268347319, 45812984491, 567767102431, 733007751851, 2932031007403, 10052678938039, 46912496118443, 145295143558111, 3002399751580331, 41175768098368951, 192153584101141163
Offset: 1

Views

Author

Vladimir Shevelev, Jul 15 2008, Jul 22 2008; corrected Sep 07 2008

Keywords

Comments

The sequence contains, in particular, A126614 (q=2) and A143012 (q=3).
If pq-1 is squarefree then the terms of the sequence are either primes or overpseudoprimes to base 2 (see A141232). In particular, they are strong pseudoprimes to base 2 (A001262).

Examples

			Entry 3 from (q=2,p=3), entry 11 from (q=2,p=5), entry 43 from (q=2,p=7), entry 151 from (q=3,p=5), entry 683 from (q=2,p=11).
		

Crossrefs

Programs

  • Maple
    N:= 100: # to use all (p,q) with p*q < N
    Primes:= select(isprime,[$2..floor(N/2)]):
    A:= {}:
    for i from 1 to nops(Primes) do
      p:= Primes[i];
      Qs:= select(q -> q < N/p, [seq(Primes[j],j=1..i-1)]);
      A:= A union {seq((2^(p*q)-1)/(2^p-1)/(2^q-1),q=Qs)};
    od:
    A; # Robert Israel, Sep 02 2014
  • Mathematica
    terms = 27; Clear[seq]; seq[m_] := seq[m] = Table[(2^(p q)-1)/((2^p-1) (2^q-1)), {q, Prime[Range[m]]}, {p, Prime[Range[PrimePi[q]+1, terms]]}] // Flatten // Union // PadRight[#, terms]&;
    seq[1]; seq[m=2]; While[seq[m] != seq[m-1], m++]; seq[m] (* Jean-François Alcover, Sep 17 2018 *)

Extensions

a(17) to a(27) from Robert Israel, Sep 03 2014

A141216 a(n) = A137576((N-1)/2) - N, where N = A001567(n).

Original entry on oeis.org

30, 320, 224, 240, 72, 360, 728, 0, 672, 216, 1320, 0, 0, 16, 5060, 60, 126, 10560, 216, 0, 3360, 2574, 150, 5040, 2808, 3600, 3600, 232, 400, 420, 22, 2700, 2784, 224, 96, 70, 1640, 240, 9200, 3600, 2760, 58344, 616, 504, 102, 5600, 8064, 264, 11880, 1440, 7488, 252
Offset: 1

Views

Author

Vladimir Shevelev, Jun 14 2008, Jul 13 2008

Keywords

Comments

The zero terms are of a special interest. Indeed, since for any odd prime p, A137576((p-1)/2)=p, then it is natural to call "overpseudoprimes" those Poulet pseudoprimes A001567(n) for which a(n)=0.
Theorem. A squarefree composite number m = p_1*p_2*...*p_k is an overpseudoprime if and only if A002326((p_1-1)/2) = A002326((p_2-1)/2) = ... = A002326((p_k-1)/2). Moreover, every overpseudoprime is in A001262.
Note that in A001262 there exist terms which are not squarefree. The first is A001262(52) = 1194649 = 1093^2.
It can be shown that if an overpseudoprime is not a multiple of the square of a Wieferich prime (see A001220) then it is squarefree. Also all squares of Wieferich primes are overpseudoprimes.

Crossrefs

Programs

  • Mathematica
    fppQ[n_]:=PowerMod[2,n,n]==2;f[n_] := (t = MultiplicativeOrder[2, 2n+1])*DivisorSum[2n+1, EulerPhi[#] / MultiplicativeOrder[2, #]&]-t+1; s={}; Do[If[fppQ[n] && CompositeQ[n],AppendTo[s,f[(n-1)/2 ]-n]],{n,1,10000}]; s (* Amiram Eldar, Dec 09 2018 after Jean-François Alcover at A137576 *)
  • PARI
    f(n) = my(t); sumdiv(2*n+1, d, eulerphi(d)/(t=znorder(Mod(2, d))))*t-t+1; \\ A137576
    isfpp(n) = {Mod(2, n)^n==2 & !isprime(n) & n>1}; \\ A001567
    lista(nn) = {for (n=1, nn, if (isfpp(n), print1(f((n-1)/2) - n, ", ");););} \\ Michel Marcus, Dec 09 2018

Extensions

More terms via b137576.txt from R. J. Mathar, Jun 12 2010
More terms from Michel Marcus, Dec 09 2018

A230485 Strong pseudoprimes n to base 2 such that n-2 and n+2 are primes.

Original entry on oeis.org

3465253618401, 44202753561285411, 1640293473202755801, 10623546148468360251
Offset: 1

Views

Author

Shyam Sunder Gupta, Oct 20 2013

Keywords

Comments

For all n, a(n)-2 is in A230810. - M. F. Hasler, Dec 08 2016

Examples

			3465253618401 is a strong pseudoprime (base 2) and 3465253618399 and 3465253618403 are primes.
		

Crossrefs

A230487 Strong pseudoprimes k to base 2 such that either k-2 or k+2 is prime.

Original entry on oeis.org

4681, 29341, 42799, 49141, 52633, 85489, 90751, 104653, 253241, 280601, 458989, 580337, 1004653, 1082401, 1207361, 1251949, 1302451, 1678541, 1907851, 1909001, 2419385, 2510569, 2811271, 3090091, 3539101, 5044033, 5049001, 5173601, 5489641, 5590621, 7177105
Offset: 1

Views

Author

Shyam Sunder Gupta, Oct 20 2013

Keywords

Examples

			4681 is a strong pseudoprime (base 2) and 4679 is prime. 253241 is a strong pseudoprime (base 2) and 253243 is prime.
		

Crossrefs

Union of A230483 and A230484.

A307767 The "non-residue" pseudoprimes: odd composite numbers n such that b(n)^((n-1)/2) == -1 (mod n), where base b(n) = A020649(n).

Original entry on oeis.org

3277, 3281, 29341, 49141, 80581, 88357, 104653, 121463, 196093, 314821, 320167, 458989, 476971, 489997, 491209, 721801, 800605, 838861, 873181, 877099, 973241, 1004653, 1251949, 1268551, 1302451, 1325843, 1373653, 1397419, 1441091, 1507963, 1509709, 1530787, 1590751, 1678541, 1809697
Offset: 1

Views

Author

Thomas Ordowski, Apr 27 2019

Keywords

Comments

As is well known, for an odd prime p, b(p) is the smallest quadratic non-residue b modulo p if and only if b(p) is the smallest base b such that b^((p-1)/2) == -1 (mod p). Note that b(n) is always a prime.
Conjecture: If 2^((n-1)/2) == -1 (mod n), then b(n) = 2, where b(n) as above. This is true for odd primes n; is it for odd composites n? If so, then all composite numbers n such that 2^((n-1)/2) == -1 (mod n) are in this sequence.
It seems that, for defined pseudoprimes n (similar to the odd primes p),
b(n) is the smallest base b such that b^((n-1)/2) == -1 (mod n), although this is not required by their definition.
Note: a "non-residue" pseudoprime n is a strong pseudoprime to base b(n); the Jacobi symbol (b(n)/n) = -1, where b(n) is the smallest non-residue modulo n; such a pseudoprime n is not a Proth number, so n = k*2^m + 1 with odd k > 2^m.
Problem: are there infinitely many such numbers?

Examples

			2^((3277-1)/2) == -1 (mod 3277), 3^((3281-1)/2) == -1 (mod 3281), ...
		

Crossrefs

Cf. A001262, A006970, A020649, A047713, A053760, A244626, A307798 (the "residue" pseudoprimes), A307809.

Programs

  • Mathematica
    residueQ[n_, m_] := Module[{ans = 0}, Do[If[Mod[k^2, m] == n, ans = True; Break[]], {k, 0, Floor[m/2]}]; ans]; A020649[n_] := Module[{m = 0}, While[ residueQ[m, n], m++]; m]; aQ[n_] := CompositeQ[n] && PowerMod[A020649[n], ((n - 1)/2), n] == n - 1; Select[Range[3, 110000, 2], aQ] (* Amiram Eldar, Apr 27 2019 *)

Extensions

More terms from Amiram Eldar, Apr 27 2019

A020238 Strong pseudoprimes to base 12.

Original entry on oeis.org

91, 133, 145, 247, 1649, 1729, 2821, 8911, 9073, 10585, 13051, 13333, 16471, 19517, 20737, 21361, 24013, 24727, 26467, 29539, 31483, 31621, 34219, 34861, 35881, 38311, 38503, 40321, 53083, 67861, 79381, 79501, 88831, 97351, 115231, 121301, 131977
Offset: 1

Views

Author

Keywords

Crossrefs

A020243 Strong pseudoprimes to base 17.

Original entry on oeis.org

9, 91, 145, 781, 1111, 2821, 4033, 4187, 5365, 5833, 6697, 7171, 15805, 19729, 21781, 22791, 24211, 26245, 31621, 33001, 33227, 34441, 35371, 38081, 42127, 49771, 71071, 74665, 77293, 78881, 88831, 96433, 97921, 98671, 101101, 102311, 125563, 129493
Offset: 1

Views

Author

Keywords

Crossrefs

Superset of A188755.

Programs

  • PARI
    /* with A001262 */
    isA020243(n)={ isStrongPsp(n,17) }
    { for(n=1,300000000,
            if(isA020243(n), print(n) ;) ;
    ) ;
    } /* R. J. Mathar, Mar 07 2012 */

A020245 Strong pseudoprimes to base 19.

Original entry on oeis.org

9, 49, 169, 343, 1849, 2353, 2701, 4033, 4681, 6541, 6697, 7957, 9997, 12403, 13213, 13747, 15251, 16531, 18769, 19729, 24761, 30589, 31621, 31861, 32477, 41003, 49771, 63139, 64681, 65161, 66421, 68257, 73555, 96049, 102831, 118957, 129961, 137311
Offset: 1

Views

Author

Keywords

Programs

  • PARI
    /* with A001262 */
    isA020245(n)={ isStrongPsp(n,19) }
    { for(n=1,300000000, if(isA020245(n), print(n) ;) ;) ;} /* R. J. Mathar, Mar 07 2012 */

A063847 Carmichael numbers which are also base-2 strong pseudoprimes.

Original entry on oeis.org

15841, 29341, 52633, 252601, 314821, 1909001, 3581761, 4335241, 5049001, 5310721, 5444489, 15247621, 29111881, 35703361, 36765901, 38624041, 53711113, 68154001, 99036001, 101649241, 104852881, 115039081, 133800661, 161035057, 172290241, 214852609, 238244041, 299736181
Offset: 1

Views

Author

Shyam Sunder Gupta, Aug 26 2001

Keywords

Crossrefs

Extensions

Corrected and extended by Daniel Suteu, Oct 01 2019

A139791 Numbers n for which 2n is a multiple of A002326(n), the multiplicative order of 2 mod 2n+1.

Original entry on oeis.org

1, 2, 3, 5, 6, 8, 9, 11, 14, 15, 18, 20, 21, 23, 26, 29, 30, 33, 35, 36, 39, 41, 44, 48, 50, 51, 53, 54, 56, 63, 65, 68, 69, 74, 75, 78, 81, 83, 86, 89, 90, 95, 96, 98, 99, 105, 111, 113, 114, 116, 119, 120, 125, 128, 131, 134, 135, 138, 140, 141, 146, 153, 155, 156, 158, 165, 168, 170
Offset: 1

Views

Author

Vladimir Shevelev, May 21 2008, May 24 2008

Keywords

Comments

The sequence properly contains A005097. 170 is the first number which is not in A005097. One can prove that A002326(2^(2t-1)) = 4t. Thus if n=2^(2t-1), where, for any m>0, t=2^(m-1) then 2n is a multiple of A002326(n) while 2n+1 is a Fermat number which, as well known, is not always a prime.
The sequence is the union of A005097 and (A001567 - 1)/2. [Conjectured by Vladimir Shevelev, proved by Ray Chandler, May 26 2008]

References

  • Christopher Adler and Jean-Paul Allouche (2022), Finite self-similar sequences, permutation cycles, and music composition, Journal of Mathematics and the Arts, 16:3, 244-261, DOI: 10.1080/17513472.2022.2116745.

Crossrefs

Programs

  • Mathematica
    Select[Range[160], Divisible[2#, MultiplicativeOrder[2, 2#+1]] &] (* Amiram Eldar, Jun 28 2019 *)
  • PARI
    isok(n) = !(2*n % znorder(Mod(2, 2*n+1))); \\ Michel Marcus, Nov 02 2017

Extensions

Data extended up to a(68) = 170 to clarify distinction from A005097 and essentially identical sequences A130290 and A102781, by M. F. Hasler, Dec 13 2019
Previous Showing 41-50 of 78 results. Next