cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 125 results. Next

A088863 Number of prime factors of n-th Mersenne number M(p_n).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 2, 2, 3, 3, 3, 2, 1, 2, 3, 3, 3, 2, 1, 2, 2, 2, 1, 2, 5, 1, 2, 2, 2, 2, 5, 4, 5, 2, 4, 3, 4, 5, 3, 2, 2, 3, 6, 2, 4, 4, 6, 2, 5, 3, 4, 2, 2, 3, 2, 3, 2, 5, 3, 4, 4, 3, 5, 2, 3, 3, 6, 5, 2, 2, 5, 3, 9, 4, 3, 5, 2, 8, 4, 4, 3, 5, 2, 4, 6, 3, 4, 2, 7, 3, 4, 4, 1, 2, 5, 4, 5, 3, 5, 4
Offset: 1

Views

Author

Jeppe Stig Nielsen, Nov 25 2003

Keywords

Examples

			a(5)=2 because M(p_5)=M(11)=2047 has 2 (not necessarily distinct) prime factors.
		

Crossrefs

Programs

  • Maple
    seq(nops(ifactor(2^ithprime(n)-1)),n=1..32); # Emeric Deutsch, Dec 23 2004
  • Mathematica
    Do[m = 2^Prime[n] - 1; Print[Plus @@ Last /@ FactorInteger[m]], {n, 1, 50}] (* Ryan Propper, Jul 31 2005 *)
  • PARI
    for(n=1,137,print1(bigomega(2^prime(n)-1)",")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Apr 28 2007

Formula

Extensions

14 more terms from Emeric Deutsch, Dec 23 2004
More terms from Ryan Propper, Jul 31 2005
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Apr 28 2007

A303941 Triangle read by rows: T(0,0) = 1; T(n,k) = 3*T(n-1,k) - 2*T(n-2,k-1) for k = 0..floor(n/2); T(n,k)=0 for n or k < 0. Triangle of coefficients of Fermat polynomials.

Original entry on oeis.org

1, 3, 9, -2, 27, -12, 81, -54, 4, 243, -216, 36, 729, -810, 216, -8, 2187, -2916, 1080, -96, 6561, -10206, 4860, -720, 16, 19683, -34992, 20412, -4320, 240, 59049, -118098, 81648, -22680, 2160, -32, 177147, -393660, 314928, -108864, 15120, -576, 531441, -1299078, 1180980, -489888, 90720, -6048, 64
Offset: 0

Views

Author

Zagros Lalo, May 03 2018

Keywords

Comments

The numbers in rows of the triangle are along skew diagonals pointing top-right in center-justified triangle given in A303901 ((3-2x)^n).
Row n gives coefficients of Fermat polynomial.
The coefficients in the expansion of 1/(1-3x+2x^2) are given by the sequence generated by the row sums.

Examples

			Triangle begins:
n\k |       0         1        2         3        4        5      6     7
----+--------------------------------------------------------------------
   0|       1
   1|       3
   2|       9        -2
   3|      27       -12
   4|      81       -54        4
   5|     243      -216       36
   6|     729      -810      216        -8
   7|    2187     -2916     1080       -96
   8|    6561    -10206     4860      -720       16
   9|   19683    -34992    20412     -4320      240
  10|   59049   -118098    81648    -22680     2160      -32
  11|  177147   -393660   314928   -108864    15120     -576
  12|  531441  -1299078  1180980   -489888    90720    -6048     64
  13| 1594323  -4251528  4330260  -2099520   489888   -48384   1344
  14| 4782969 -13817466 15588936  -8660520  2449440  -326592  16128  -128
  15|14348907 -44641044 55269864 -34642080 11547360 -1959552 145152 -3072
		

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 70, 104, 394, 395.

Crossrefs

Row sums give A000225.
Some row sums give A001348.
Cf. A303901.

Programs

  • Mathematica
    t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, 3 t[n - 1, k] - 2 t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 14}, {k, 0, Floor[n/2]}] // Flatten
  • PARI
    T(n,k) = if ((n<0) || (k<0), 0, if ((n==0) && (k==0), 1, 3*T(n-1,k) - 2*T(n-2,k-1)));
    tabf(nn) = for (n=0, nn, for (k=0, n\2, print1(T(n,k), ", ")); print); \\ Michel Marcus, May 10 2018

A056772 Numbers k such that phi(k+4) = phi(k) + 4, where phi(k) = A000010(k) is Euler's totient function.

Original entry on oeis.org

3, 7, 12, 13, 18, 19, 24, 28, 36, 37, 40, 43, 66, 67, 79, 88, 97, 103, 109, 124, 127, 163, 184, 193, 223, 229, 232, 277, 307, 313, 328, 349, 379, 397, 424, 439, 457, 463, 487, 499, 508, 613, 643, 664, 673, 712, 739, 757, 769, 823, 853, 859, 877, 883, 904, 907
Offset: 1

Views

Author

Labos Elemer, Aug 17 2000

Keywords

Comments

In contrast with A015913, composite solutions are not rare. Prime solutions are common.
From Kevin J. Gomez, Mar 02 2016: (Start)
Composite solutions have two known forms:
n such that n = 4 * (2^p - 1) where 2^p - 1 is a Mersenne prime. (A001348)
n such that n = 8q where q is a Sophie Germain prime. (A005394)
There are composite solutions (such as 36) that do not fit either of these forms. (End)

Examples

			For k = 1048: phi(1048) = 520, phi(1048+4) = 524.
		

Crossrefs

Cf. A000010, A015913 (sigma(k+4) = sigma(k) + 4).
Cf. A001838 (k=2), this sequence (k=4), A262084 (k=6), A262085 (k=8), A262086 (k=10).

Programs

A108974 Sort the primes (except 2) according to the multiplicative order of 2 modulo that prime. If two primes have the same order of 2, they are arranged numerically.

Original entry on oeis.org

3, 7, 5, 31, 127, 17, 73, 11, 23, 89, 13, 8191, 43, 151, 257, 131071, 19, 524287, 41, 337, 683, 47, 178481, 241, 601, 1801, 2731, 262657, 29, 113, 233, 1103, 2089, 331, 2147483647, 65537, 599479, 43691, 71, 122921, 37, 109, 223, 616318177, 174763, 79
Offset: 1

Views

Author

Douglas Stones (dssto1(AT)student.monash.edu.au), Jul 27 2005

Keywords

Comments

Or, primitive prime divisors of the Mersenne numbers 2^n-1 (see A000225) in their order of occurrence.
Of course the Mersenne primes 2^p-1 (cf. A000043) appear in this sequence.
If all odd positive numbers, not just the odd primes, are sorted in this way, the result is A059912. - Jeppe Stig Nielsen, Feb 13 2020

Examples

			The order of 2 modulo 3 is 2 and the order of 2 modulo 7 is 3. So 3 comes before 7.
		

Crossrefs

Programs

  • Mathematica
    a = 1; DeleteDuplicates[Flatten[#[[All, 1]] & /@ FactorInteger[Table[a = 2 a + 1, {i, 1, 30}]]]] (* Horst H. Manninger, Mar 20 2021 *)
  • PARI
    do(n)=my(v=List(),P=1,g,t,f); for(k=2,n, t=2^k-1; g=P; while((g=gcd(g,t))>1, t/=g); f=factor(t)[,1]; for(i=1,#f, listput(v,f[i])); P*=t); Vec(v) \\ Charles R Greathouse IV, Sep 23 2016

Extensions

More terms from Martin Fuller, Sep 25 2006

A131458 Residues of 3^(2^(p(n)-1)-1) for Mersenne numbers with prime indices.

Original entry on oeis.org

0, 6, 30, 126, 1565, 8190, 131070, 524286, 7511964, 89777599, 2147483646, 20166585982, 840455563322, 4787976306682, 5519162753736, 2617809209727498, 334169564069012755, 2305843009213693950, 47306781863857413639
Offset: 1

Views

Author

Dennis Martin (dennis.martin(AT)dptechnology.com), Jul 13 2007, Jul 20 2007

Keywords

Comments

Mp is prime iff 3^(2^(p(n)-1)-1) is congruent to (-1) Mod Mp. Thus M7 = 127 is prime because 3^63 Mod 127 = 126 (=127-1) while M11 = 2047 is composite because 3^1023 Mod 2047 <> 2046.

Examples

			a(5) = 3^(2^(11-1)-1) Mod 2^11-1 = 3^1023 Mod 2047 = 1565
		

Crossrefs

Formula

a(n) = 3^(2^(p(n)-1)-1) Mod 2^p(n)-1

A131459 Residues of 3^(2^(p(n)-1)) for Mersenne numbers with prime indices.

Original entry on oeis.org

0, 4, 28, 124, 601, 8188, 131068, 524284, 5758678, 269332797, 2147483644, 60499757946, 322343434415, 5567835897839, 16557488261208, 7853427629182494, 426047939903614778, 2305843009213693948, 141920345591572240917
Offset: 1

Views

Author

Dennis Martin (dennis.martin(AT)dptechnology.com), Jul 13 2007, Jul 20 2007

Keywords

Comments

Mp is prime iff 3^(2^(p(n)-1)) is congruent to (-3) Mod Mp. Thus M7 = 127 is prime because 3^64 Mod 127 = 124 (=127-3) while M11 = 2047 is composite because 3^1024 Mod 2047 <> 2044.

Examples

			a(5) = 3^(2^(11-1)) Mod 2^11-1 = 3^1024 Mod 2047 = 601
		

Crossrefs

Formula

a(n) = 3^(2^(p(n)-1)) Mod 2^p(n)-1

A131460 Residues of 3^(2^(p(n)-1)+1) for Mersenne numbers with prime indices.

Original entry on oeis.org

0, 5, 22, 118, 1803, 8182, 131062, 524278, 498820, 271127480, 2147483638, 44060320367, 967030303245, 7907414671310, 49672464783624, 5545884378065500, 125222315103997360, 2305843009213693942, 130613131595363896897
Offset: 1

Views

Author

Dennis Martin (dennis.martin(AT)dptechnology.com), Jul 13 2007, Jul 20 2007

Keywords

Comments

Mp is prime iff 3^(2^(p(n)-1)+1) is congruent to (-9) Mod Mp. Thus M7 = 127 is prime because 3^65 Mod 127 = 118 (=127-9) while M11 = 2047 is composite because 3^1025 Mod 2047 <> 2038.

Examples

			a(5) = 3^(2^(11-1)+1) Mod 2^11-1 = 3^1025 Mod 2047 = 1803
		

Crossrefs

Formula

a(n) = 3^(2^(p(n)-1)+1) Mod 2^p(n)-1

A131461 Residues of 3^(2^p(n)-2) for Mersenne numbers with prime indices.

Original entry on oeis.org

0, 1, 1, 1, 1013, 1, 1, 1, 5884965, 65165529, 1, 103888408793, 474639880182, 4112907695371, 72685811469476, 5155089749987738, 440411515280180314, 1, 95591506202441271281, 69291880649932219827
Offset: 1

Views

Author

Dennis Martin (dennis.martin(AT)dptechnology.com), Jul 20 2007

Keywords

Comments

M_p is prime iff 3^(M_p-1) is congruent to 1 mod M_p. Thus M_7 = 127 is prime because 3^126 mod 127 = 1 while M_11 = 2047 is composite because 3^2046 mod 2047 <> 1.

Examples

			a(5) = 3^(2^11-2) mod 2^11-1 = 3^2046 mod 2047 = 1013
		

Crossrefs

Formula

a(n) = 3^(2^p(n)-2) mod 2^p(n)-1

A131462 Residues of 3^(2^p(n)-1) for Mersenne numbers with prime indices.

Original entry on oeis.org

0, 3, 3, 3, 992, 3, 3, 3, 877681, 195496587, 3, 36787319437, 1423919640546, 3542630063906, 77319946053101, 6458069995222223, 168313041233693968, 3, 139200566017647400916, 207875641949796659481
Offset: 1

Views

Author

Dennis Martin (dennis.martin(AT)dptechnology.com), Jul 20 2007

Keywords

Comments

M_p is prime iff 3 ^ M_p is congruent to 3 mod M_p. Thus M_7 = 127 is prime because 3^127 mod 127 = 3 while M_11 = 2047 is composite because 3^2047 mod 2047 <> 3.

Examples

			a(5) = 3^(2^11-1) mod 2^11-1 = 3^2047 mod 2047 = 992
		

Crossrefs

Formula

a(n) = 3^(2^p(n)-1) mod 2^p(n)-1

A131463 Residues of 3^(2^p(n)) for Mersenne numbers with prime indices.

Original entry on oeis.org

0, 2, 9, 9, 929, 9, 9, 9, 2633043, 49618850, 9, 110361958311, 2072735666087, 1831797169511, 91222349803976, 1359811476184687, 504939123701081904, 9, 122453792873589376894, 623626925849389978443
Offset: 1

Views

Author

Dennis Martin (dennis.martin(AT)dptechnology.com), Jul 20 2007

Keywords

Comments

M_p is prime iff 3^(M_p+1) is congruent to 9 mod M_p. Thus M_7 = 127 is prime because 3^128 mod 127 = 9 while M_11 = 2047 is composite because 3^2048 mod 2047 <> 9.

Examples

			a(5) = 3^(2^11) mod 2^11-1 = 3^2048 mod 2047 = 929
		

Crossrefs

Formula

a(n) = 3^(2^p(n)) mod 2^p(n)-1
Previous Showing 41-50 of 125 results. Next