cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A262084 Numbers m that satisfy the equation phi(m + 6) = phi(m) + 6 where phi(m) = A000010(m) is Euler's totient function.

Original entry on oeis.org

5, 7, 11, 13, 17, 21, 23, 31, 37, 40, 41, 47, 53, 56, 61, 67, 73, 83, 88, 97, 98, 101, 103, 107, 131, 136, 151, 152, 156, 157, 167, 173, 191, 193, 223, 227, 233, 237, 248, 251, 257, 263, 271, 277, 296, 307, 311, 328, 331, 347, 353, 367, 373, 376, 383, 433, 443
Offset: 1

Views

Author

Kevin J. Gomez, Sep 10 2015

Keywords

Comments

The majority of solutions can be predicted by known properties of the equality. There are several solutions that do not fit these parameters.
An odd natural number m is a solution if m and m + 6 are both prime (sexy primes) (A023201).
Among the solutions for even natural numbers are all m = 8*p with odd primes p such that 4*p+3 is a prime number. Proof: From A000010 we can learn that the formula phi(p*2) = floor(((2 + p - 1) mod p)/(p - 1)) + p - 1 is known. If we define p = 4*q+3 and m = 8*q and insert, we will obtain phi(8*q+6) = 4*q+2. Also it is known that phi(8*q) = 4*q-4 if q is any odd prime. - Thomas Scheuerle, Dec 20 2024

Examples

			5 is a term since phi(5+6) = 10 = 6 + 4 = phi(5) + 6.
		

Crossrefs

Cf. A001838 (k=2), A056772 (k=4), A262085 (k=8), A262086 (k=10).

Programs

  • Magma
    [n: n in [1..500] | EulerPhi(n+6) eq EulerPhi(n)+6]; // Vincenzo Librandi, Sep 11 2015
    
  • Mathematica
    Select[Range@500, EulerPhi@(# + 6)== EulerPhi[#] + 6 &] (* Vincenzo Librandi, Sep 11 2015 *)
  • PARI
    is(n)=eulerphi(n + 6) == eulerphi(n) + 6 \\ Anders Hellström, Sep 11 2015
  • Sage
    [n for n in [1..1000] if euler_phi(n+6)==euler_phi(n)+6] # Tom Edgar, Sep 10 2015
    

A262085 Numbers n such that phi(n + 8) = phi(n) + 8 where phi(n) = A000010(n) is Euler's totient function.

Original entry on oeis.org

3, 5, 11, 23, 24, 29, 36, 42, 48, 50, 53, 56, 59, 71, 72, 80, 89, 101, 102, 125, 131, 132, 149, 173, 176, 191, 230, 233, 248, 263, 269, 359, 368, 389, 401, 431, 449, 464, 479, 491, 563, 569, 593, 599, 638, 653, 656, 683, 701, 719, 743, 761, 821, 848, 911, 929, 983
Offset: 1

Views

Author

Kevin J. Gomez, Sep 10 2015

Keywords

Comments

Sequence includes numbers n such that n and n + 8 are both prime (A023202).
Sequence also includes numbers n equal to 8*(a Mersenne prime) (cf A000668).
Sequence also includes n such that n/16 and n/8 + 1 are both odd primes.
Contains more composites than sequences A262084 and A262086. This is most likely due to the fact that 8 is a power of 2, as in A001838.

Examples

			3 since phi(11) = phi(3) + 8 (3 and 11 are both prime).
24 is a solution since phi(32) = phi(24) + 8 (24 is 8 * 3; 3 is a Mersenne prime).
		

Crossrefs

Cf. A000010.
Cf. A001838 (k=2), A056772 (k=4), A262084 (k=6), A262086 (k=10).

Programs

  • Magma
    [n: n in [1..1000] | EulerPhi(n+8) eq EulerPhi(n)+8]; // Vincenzo Librandi, Sep 11 2015
    
  • Maple
    select(t -> numtheory:-phi(t+8) = numtheory:-phi(t)+8, [$1..1000]); # Robert Israel, Mar 04 2016
  • Mathematica
    Select[Range@1000, EulerPhi@(# + 8)== EulerPhi[#] + 8 &] (* Vincenzo Librandi, Sep 11 2015 *)
  • PARI
    is(n)=eulerphi(n + 8) == eulerphi(n) + 8 \\ Anders Hellström, Sep 11 2015
    
  • Sage
    [n for n in (1..1000) if euler_phi(n+8) == euler_phi(n)+8] # Bruno Berselli, Mar 04 2016

A262086 Numbers k such that phi(k + 10) = phi(k) + 10, where phi(k) = A000010(k) is Euler's totient function.

Original entry on oeis.org

3, 7, 13, 19, 31, 36, 37, 43, 61, 73, 79, 97, 103, 127, 139, 157, 163, 181, 223, 229, 241, 271, 283, 307, 337, 349, 373, 379, 409, 421, 433, 439, 457, 499, 547, 577, 607, 631, 643, 673, 691, 709, 733, 751, 787, 811, 829, 853, 877, 919, 937, 967
Offset: 1

Views

Author

Kevin J. Gomez, Sep 10 2015

Keywords

Comments

The only composite term less than 10^11 is 36. - Giovanni Resta, Sep 14 2015

Examples

			3 is in the sequence since phi(13) = phi(3) + 10.
		

Crossrefs

Cf. A001838 (k=2), A056772 (k=4), A262084 (k=6), A262085 (k=8), this sequence (k=10).

Programs

  • Magma
    [n: n in [1..1000] | EulerPhi(n+10) eq EulerPhi(n)+10]; // Vincenzo Librandi, Sep 11 2015
    
  • Mathematica
    Select[Range@1000, EulerPhi@(# + 10) == EulerPhi[#] + 10 &] (* Vincenzo Librandi, Sep 11 2015 *)
  • PARI
    is(n)=eulerphi(n + 10) == eulerphi(n) + 10 \\ Anders Hellström, Sep 11 2015

A056675 Number of non-unitary but squarefree divisors of n!. Also number of unitary but not-squarefree divisors of n!.

Original entry on oeis.org

0, 0, 0, 2, 4, 6, 12, 12, 12, 14, 28, 28, 56, 60, 60, 60, 120, 120, 240, 240, 240, 248, 496, 496, 496, 504, 504, 504, 1008, 1008, 2016, 2016, 2016, 2032, 2032, 2032, 4064, 4080, 4080, 4080, 8160, 8160, 16320, 16320, 16320, 16352, 32704, 32704, 32704, 32704
Offset: 1

Views

Author

Labos Elemer, Aug 10 2000

Keywords

Examples

			n=10: 10! = 2*2*2*2*2*2*2*2*3*3*3*3*5*5*7 = 256*81*25*7, which has 270 divisors, of which 16 are unitary and 16 are squarefree; overlap={1,7}. The set {2, 3, 5, 6, 10, 14, 15, 21, 30, 35, 42, 70, 105, 210} represents the squarefree non-unitary divisors of 10!, so a(10)=14.
		

Crossrefs

Programs

  • PARI
    a(n) = my(f=n!); sumdiv(f, d, issquarefree(d) && (gcd(d, f/d) != 1)); \\ Michel Marcus, Sep 05 2017

Formula

a(n) = A048656(n) - A000005(A055231(n!)) = A048656(n) - A000005(A007913(n!)/A055229(n!)).
a(n) = A056674(A000142(n)). - Amiram Eldar, Aug 06 2019
a(n) = A048656(n) - A056672(n). - Sean A. Irvine, May 02 2022

A056773 Composite n such that phi(n+4) = phi(n)+4.

Original entry on oeis.org

12, 18, 24, 28, 36, 40, 66, 88, 124, 184, 232, 328, 424, 508, 664, 712, 904, 1048, 1384, 1432, 1528, 1864, 1912, 2008, 2248, 2344, 2586, 2872, 3352, 3448, 3544, 3928, 4072, 4744, 5128, 5224, 5272, 5464, 5752, 5944, 6088, 6472, 7288, 7624, 8104, 8152, 8248
Offset: 1

Views

Author

Labos Elemer, Aug 17 2000

Keywords

Comments

Are all terms even? - Robert Israel, Apr 28 2020

Examples

			24 is in the sequence because 24 is composite and phi(24)+4 = 12 = phi(24+4).
		

Crossrefs

A001838, A015913, A055458. Composites in A056772. Primes in A056772 are A023200.

Programs

  • Maple
    filter:= n -> not isprime(n) and numtheory:-phi(n+4)=numtheory:-phi(n)+4:
    select(filter, [$1..10000]); # Robert Israel, Apr 28 2020
  • Mathematica
    Select[Range[9000],CompositeQ[#]&&EulerPhi[#]+4==EulerPhi[#+4]&] (* Harvey P. Dale, Feb 12 2015 *)
  • PARI
    is(n)=!isprime(n) && eulerphi(n+4)==eulerphi(n)+4 \\ Charles R Greathouse IV, Apr 28 2020

Extensions

Edited by Robert Israel, Apr 28 2020
Showing 1-5 of 5 results.