A301595
Number of thrice-partitions of n.
Original entry on oeis.org
1, 1, 4, 10, 34, 80, 254, 604, 1785, 4370, 11986, 29286, 80355, 193137, 505952, 1239348, 3181970, 7686199, 19520906, 46931241, 117334784, 282021070, 693721166, 1659075192, 4063164983, 9651686516, 23347635094, 55405326513, 133021397071, 313842472333, 749299686508
Offset: 0
The a(3) = 10 thrice-partitions:
((3)), ((21)), ((111)), ((2)(1)), ((11)(1)), ((1)(1)(1)),
((2))((1)), ((11))((1)), ((1)(1))((1)),
((1))((1))((1)).
Cf.
A000041,
A001383,
A001970,
A061260,
A063834,
A119442,
A196545,
A281113,
A289501,
A300383,
A301422,
A301462,
A301480,
A301595,
A301598,
A301706.
-
b:= proc(n, i, k) option remember; `if`(n=0 or k=0 or i=1,
1, b(n, i-1, k)+b(i$2, k-1)*b(n-i, min(n-i, i), k))
end:
a:= n-> b(n$2, 3):
seq(a(n), n=0..35); # Alois P. Heinz, Jan 25 2019
-
twie[n_]:=Sum[Times@@PartitionsP/@ptn,{ptn,IntegerPartitions[n]}];
thrie[n_]:=Sum[Times@@twie/@ptn,{ptn,IntegerPartitions[n]}];
Array[thrie,30]
(* Second program: *)
b[n_, i_, k_] := b[n, i, k] = If[n == 0 || k == 0 || i == 1,
1, b[n, i - 1, k] + b[i, i, k - 1]*b[n - i, Min[n - i, i], k]];
a[n_] := b[n, n, 3];
a /@ Range[0, 35] (* Jean-François Alcover, May 19 2021, after Alois P. Heinz *)
A001384
Number of n-node trees of height at most 4.
Original entry on oeis.org
1, 1, 1, 2, 4, 9, 19, 42, 89, 191, 402, 847, 1763, 3667, 7564, 15564, 31851, 64987, 132031, 267471, 539949, 1087004, 2181796, 4367927, 8721533, 17372967, 34524291, 68456755, 135446896, 267444085, 527027186, 1036591718, 2035083599
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
For Maple program see link in A000235.
with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: A000041:= etr(n->1): b1:= etr(k-> A000041(k-1)): A001383:= n->`if`(n=0,1,b1(n-1)): b2:= etr(A001383): a:= n->`if`(n=0,1,b2(n-1)): seq(a(n), n=0..40); # Alois P. Heinz, Sep 08 2008
-
Prepend[Nest[CoefficientList[Series[Product[1/(1-x^i)^#[[i]],{i,1,Length[#]}],{x,0,40}],x]&,{1},4],1] (* Geoffrey Critzer, Aug 01 2013 *)
A034824
Number of n-node rooted trees of height at most 7.
Original entry on oeis.org
1, 1, 1, 2, 4, 9, 20, 48, 115, 285, 710, 1789, 4514, 11431, 28922, 73182, 184917, 466755, 1176393, 2961205, 7443770, 18689435, 46869152, 117412440, 293832126, 734645046, 1835147741, 4580420719, 11423511895, 28469058647, 70899220083, 176449174539, 438854372942
Offset: 0
-
For Maple program see link in A000235.
with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: shr:= proc(p) n->`if`(n=0, 1,p(n-1)) end: b[0]:= etr(n->1): for j from 1 to 5 do b[j]:= etr(shr(b[j-1])) od: a:= shr(b[5]): seq(a(n), n=0..35); # Alois P. Heinz, Sep 08 2008
-
Prepend[Nest[CoefficientList[Series[Product[1/(1-x^i)^#[[i]], {i, 1, Length[#]}], {x, 0, 40}], x]&, {1}, 7], 1] (* Geoffrey Critzer, Aug 01 2013 *)
A218551
G.f. satisfies: A(x) = exp( Sum_{n>=1} x^n/n * Product_{k>=1} 1/(1 - x^(n*k)*A(x^k)^n) ).
Original entry on oeis.org
1, 1, 2, 5, 13, 37, 106, 322, 987, 3119, 9985, 32499, 106910, 355524, 1191960, 4026739, 13689783, 46807685, 160842381, 555175377, 1923970425, 6691769948, 23351250882, 81729943060, 286842588316, 1009256119760, 3559337691300, 12579738946685, 44549347255523, 158058591860684
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 13*x^4 + 37*x^5 + 106*x^6 + 322*x^7 +...
where
log(A(x)) = x/(1*(1-x*A(x))*(1-x^2*A(x^2))*(1-x^3*A(x^3))*...) +
x^2/(2*(1-x^2*A(x)^2)*(1-x^4*A(x^2)^2)*(1-x^6*A(x^3)^2)*...) +
x^3/(3*(1-x^3*A(x)^3)*(1-x^6*A(x^2)^3)*(1-x^9*A(x^3)^3)*...) +
x^4/(4*(1-x^4*A(x)^4)*(1-x^8*A(x^2)^4)*(1-x^12*A(x^3)^4)*...) +...
Explicitly,
log(A(x)) = x + 3*x^2/2 + 10*x^3/3 + 31*x^4/4 + 106*x^5/5 + 342*x^6/6 + 1198*x^7/7 + 4071*x^8/8 + 14356*x^9/9 + 50408*x^10/10 +...
-
{a(n)=local(A=1+x);for(i=1,n,A=exp(sum(m=1,n,x^m/m*prod(k=1,n\m+1,1/(1-x^(m*k)*subst(A,x,x^k +x*O(x^n))^m)))));polcoeff(A,n)}
for(n=0,30,print1(a(n),", "))
A302094
Number of relatively prime or monic twice-partitions of n.
Original entry on oeis.org
1, 3, 6, 10, 27, 35, 113, 170, 396, 641, 1649, 2318, 5905, 9112, 18678, 32529, 69094, 106210, 227480, 363433, 705210, 1196190, 2325023, 3724233, 7192245, 11915884, 21857887, 36597843, 67406158, 109594872, 201747847, 333400746, 591125465, 987069077, 1743223350
Offset: 1
The a(4) = 10 relatively prime or monic twice-partitions:
(4), (31), (211), (1111),
(3)(1), (21)(1), (111)(1),
(2)(1)(1), (11)(1)(1),
(1)(1)(1)(1).
Cf.
A000837,
A001383,
A063834,
A093637,
A196545,
A281113,
A289501,
A300383,
A300486,
A301462,
A301467,
A301480,
A302915,
A302916,
A302917.
-
ip[n_]:=ip[n]=Select[IntegerPartitions[n],Or[Length[#]===1,GCD@@#===1]&];
Table[Sum[Times@@Length/@ip/@ptn,{ptn,ip[n]}],{n,10}]
A034825
Number of n-node rooted trees of height at most 8.
Original entry on oeis.org
1, 1, 1, 2, 4, 9, 20, 48, 115, 286, 718, 1832, 4702, 12159, 31515, 81888, 212878, 553557, 1438741, 3737331, 9700188, 25156049, 65181067, 168746672, 436505846, 1128256918, 2914103577, 7521450053, 19400577711, 50010551503, 128841990772, 331754004302
Offset: 0
-
For Maple program see link in A000235.
with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: shr:= proc(p) n->`if`(n=0, 1,p(n-1)) end: b[0]:= etr(n->1): for j from 1 to 6 do b[j]:= etr(shr(b[j-1])) od: a:= shr(b[6]): seq(a(n), n=0..31); # Alois P. Heinz, Sep 08 2008
-
Prepend[Nest[CoefficientList[Series[Product[1/(1-x^i)^#[[i]], {i, 1, Length[#]}], {x, 0, 40}], x]&, {1}, 8], 1] (* Geoffrey Critzer, Aug 01 2013 *)
A000299
Number of n-node rooted trees of height 4.
Original entry on oeis.org
0, 0, 0, 0, 1, 4, 13, 36, 93, 225, 528, 1198, 2666, 5815, 12517, 26587, 55933, 116564, 241151, 495417, 1011950, 2055892, 4157514, 8371318, 16792066, 33564256, 66875221, 132849983, 263192599, 520087551, 1025295487, 2016745784, 3958608430, 7754810743
Offset: 1
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 1..1000 (first 200 terms from N. J. A. Sloane)
- F. Harary & R. W. Robinson, The number of achiral trees, Jnl. Reine Angewandte Mathematik 278 (1975), 322-335. (Annotated scanned copy)
- J. Riordan, Enumeration of trees by height and diameter, IBM J. Res. Dev. 4 (1960), 473-478.
- J. Riordan, The enumeration of trees by height and diameter, IBM Journal 4 (1960), 473-478. (Annotated scanned copy)
- Index entries for sequences related to rooted trees
- Index entries for sequences related to trees
-
For Maple program see link in A000235.
-
f[n_] := Nest[CoefficientList[Series[Product[1/(1 - x^i)^#[[i]], {i, 1, Length[#]}], {x, 0, 40}], x] &, {1}, n];f[4]-f[3] (* Geoffrey Critzer, Aug 01 2013 *)
A034826
Number of n-node rooted trees of height at most 9.
Original entry on oeis.org
1, 1, 1, 2, 4, 9, 20, 48, 115, 286, 719, 1841, 4755, 12410, 32558, 85849, 226980, 601373, 1594870, 4232100, 11230771, 29798539, 79034638, 209526631, 555172356, 1470195001, 3891131705, 10292857772, 27212082536, 71905725130, 189911518888
Offset: 0
-
For Maple program see link in A000235.
with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: shr:= proc(p) n->`if`(n=0, 1,p(n-1)) end: b[0]:= etr(n->1): for j from 1 to 7 do b[j]:= etr(shr(b[j-1])) od: a:= shr(b[7]): seq(a(n), n=0..40); # Alois P. Heinz, Sep 08 2008
-
etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n-j], {j, 1, n}]/n]; b]; shr[p_] = If[# == 0, 1, p[#-1]]&; b[0] = etr[1&]; For[j = 1, j <= 7, j++, b[j] = etr[shr[b[j-1]]]]; a = shr[b[7]]; Table[a[n], {n, 0, 31}] (* Jean-François Alcover, Mar 10 2014, after Alois P. Heinz *)
Comments