A347542
Number of partitions of n into 6 or more parts.
Original entry on oeis.org
1, 2, 4, 7, 12, 19, 30, 44, 65, 92, 130, 178, 244, 326, 435, 571, 747, 964, 1242, 1581, 2009, 2530, 3178, 3962, 4930, 6094, 7518, 9225, 11296, 13768, 16751, 20295, 24546, 29583, 35591, 42685, 51112, 61028, 72757, 86523, 102740, 121720, 144007, 170018, 200461, 235910, 277270
Offset: 6
-
nmax = 52; CoefficientList[Series[Sum[x^k/Product[(1 - x^j), {j, 1, k}], {k, 6, nmax}], {x, 0, nmax}], x] // Drop[#, 6] &
Original entry on oeis.org
1, 2, 5, 9, 17, 27, 44, 65, 97, 136, 191, 257, 346, 451, 587, 746, 946, 1177, 1461, 1786, 2178, 2623, 3151, 3746, 4443, 5223, 6126, 7131, 8283, 9558, 11007, 12603, 14403, 16377, 18588, 21003, 23692, 26618, 29858, 33372, 37244, 41430, 46022, 50972
Offset: 1
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (2, 1, -3, 0, -1, 2, 2, -1, 0, -3, 1, 2, -1).
-
a:= proc(n) local m, r; m:= iquo (n, 12, 'r'); r:= r+1; (19+ (145+ (260+ 15* (r+9)*r+ (405+ 90*r+ 216*m) *m) *m) *m) *m/5+ [0, 1, 2, 5, 9, 17, 27, 44, 65, 97, 136, 191][r]+ [0, 16, 37, 77, 128, 208, 307, 447, 616, 840, 1105, 1441][r]*m/2+ [0, 52, 119, 213, 328, 476, 651, 865, 1112, 1404, 1735, 2117][r]*m^2/2 end: seq (a(n), n=1..50); # Alois P. Heinz, Nov 10 2008
-
CoefficientList[Series[x/((x^2+x+1)(x^2+1)(x+1)^3 (x-1)^6),{x,0,50}],x] (* or *) LinearRecurrence[{2,1,-3,0,-1,2,2,-1,0,-3,1,2,-1},{0,1,2,5,9,17,27,44,65,97,136,191,257},50] (* Harvey P. Dale, Feb 17 2016 *)
Corrected A-number in definition. Added formula. -
R. J. Mathar, Nov 21 2008
A347588
Number of partitions of n into at most 6 distinct parts.
Original entry on oeis.org
1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 12, 15, 18, 22, 27, 32, 38, 46, 54, 64, 76, 89, 104, 122, 142, 165, 192, 221, 255, 294, 337, 385, 441, 501, 570, 646, 731, 824, 930, 1043, 1171, 1310, 1464, 1630, 1817, 2015, 2236, 2473, 2734, 3013, 3322, 3648, 4008, 4391, 4809, 5252, 5738, 6249
Offset: 0
- Index entries for linear recurrences with constant coefficients, signature (1,1,0,0,-1,0,-2,0,1,1,1,1,0,-2,0,-1,0,0,1,1,-1).
-
nmax = 58; CoefficientList[Series[Sum[x^(k (k + 1)/2)/Product[(1 - x^j), {j, 1, k}], {k, 0, 6}], {x, 0, nmax}], x]
Join[{1}, LinearRecurrence[{1, 1, 0, 0, -1, 0, -2, 0, 1, 1, 1, 1, 0, -2, 0, -1, 0, 0, 1, 1, -1}, {1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 12, 15, 18, 22, 27, 32, 38, 46, 54, 64, 76}, 58]]
A256540
Number of partitions of 4n into at most 6 parts.
Original entry on oeis.org
1, 5, 20, 58, 136, 282, 532, 931, 1540, 2432, 3692, 5427, 7760, 10829, 14800, 19858, 26207, 34085, 43752, 55491, 69624, 86499, 106491, 130019, 157532, 189509, 226479, 269005, 317683, 373165, 436140, 507334, 587535, 677571, 778311, 890691, 1015691, 1154336
Offset: 0
For n=1 the 5 partitions of 1*4 = 4 are [4], [1,3], [2,2], [1,1,2] and [1,1,1,1].
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,3,-6,7,-6,6,-6,7,-6,3,-3,3,-1).
-
concat(1, vector(40, n, k=0; forpart(p=4*n, k++, , [1,6]); k))
-
Vec((3*x^8+5*x^7+11*x^6+11*x^5+13*x^4+10*x^3+8*x^2+2*x+1) / ((x-1)^6*(x^2+x+1)^2*(x^4+x^3+x^2+x+1)) + O(x^100))
A069713
As a square array T(n,k) by antidiagonals, number of ways of partitioning k into up to n parts each no more than 5, or into up to 5 parts each no more than n; as a triangle t(n,k), number of ways of partitioning n into exactly k parts each no more than 6 (i.e., of arranging k indistinguishable standard dice to produce a total of n).
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 2, 2, 1, 1, 0, 1, 3, 3, 2, 1, 1, 0, 0, 3, 4, 3, 2, 1, 1, 0, 0, 3, 5, 5, 3, 2, 1, 1, 0, 0, 2, 6, 6, 5, 3, 2, 1, 1, 0, 0, 2, 6, 8, 7, 5, 3, 2, 1, 1, 0, 0, 1, 6, 9, 9, 7, 5, 3, 2, 1, 1, 0, 0, 1, 6, 11, 11, 10, 7, 5, 3, 2, 1, 1, 0, 0, 0, 5, 11, 14, 12, 10, 7, 5
Offset: 0
As square array, rows start: 1,0,0,0,0,0,...; 1,1,1,1,1,1,...; 1,1,2,2,3,3,...; 1,1,2,3,4,5,...; 1,1,2,3,5,6,...; 1,1,2,3,5,7,...; etc. As triangle, rows start: 1; 0,1; 0,1,1; 0,1,1,1; 0,1,2,1,1; 0,1,2,2,1,1; 0,1,3,3,2,1,1; etc. T(3,7)=6 since 7 can be written as 5+2, 5+1+1, 4+3, 4+2+1, 3+3+1, 3+2+2; or alternatively as 2+2+1+1+1, 3+1+1+1, 2+2+2+1, 3+2+1+1, 3+2+2, 3+3+1. t(10,3)=6 since 10 can be written as 6+3+1, 6+2+2, 5+4+1, 5+3+2, 4+4+2, 4+3+3.
Cf.
A061676 for a similar triangle, though with distinguishable dice (and a different offset). Antidiagonal sums of T(n, k), i.e., row sums (over k) of t(n, k), are
A001402. First 22 terms are same as
A068914 (see formula).
A091498
The sixth column of triangle A091492, excluding leading zeros.
Original entry on oeis.org
1, 2, 3, 5, 8, 11, 17, 23, 31, 41, 54, 68, 88, 109, 135, 165, 202, 241, 291, 344, 407, 477, 559, 646, 751, 862, 990, 1129, 1288, 1456, 1651, 1857, 2089, 2338, 2617, 2911, 3244, 3594, 3982, 4395, 4851, 5330, 5862, 6420, 7031, 7677, 8382, 9120, 9929, 10775
Offset: 0
- Index entries for linear recurrences with constant coefficients, signature (1, 1, 0, 0, -1, 0, -2, 0, 1, 1, 1, 1, 0, -2, 0, -1, 0, 0, 1, 1, -1).
-
CoefficientList[Series[(1+x-x^5)/((1-x)(1-x^2)(1-x^3)(1-x^4)(1-x^5)(1-x^6)),{x,0,60}],x] (* or *) LinearRecurrence[ {1,1,0,0,-1,0,-2,0,1,1,1,1,0,-2,0,-1,0,0,1,1,-1},{1,2,3,5,8,11,17,23,31,41,54,68,88,109,135,165,202,241,291,344,407},60](* Harvey P. Dale, Dec 09 2012 *)
-
{a(n)=polcoeff( (1+x-x^5)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)) +O(x^(n+1)),n,x)}
A194197
Number of partitions of 60n into parts <= 6.
Original entry on oeis.org
1, 19858, 436140, 2897747, 11402579, 33377536, 80758518, 171070425, 328507157, 585011614, 981355696, 1568220303, 2407275335, 3572259692, 5150061274, 7241796981, 9963892713, 13449163370, 17847892852, 23328914059, 30080688891, 38312388248, 48254972030, 60162269137
Offset: 0
-
Table[1 + (167n + 2325n^2 + 15400n^3 + 47250n^4 + 54000n^5)/6, {n, 0, 25}]
LinearRecurrence[{6,-15,20,-15,6,-1},{1,19858,436140,2897747,11402579,33377536},30] (* Harvey P. Dale, Aug 12 2018 *)
Comments