cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A347542 Number of partitions of n into 6 or more parts.

Original entry on oeis.org

1, 2, 4, 7, 12, 19, 30, 44, 65, 92, 130, 178, 244, 326, 435, 571, 747, 964, 1242, 1581, 2009, 2530, 3178, 3962, 4930, 6094, 7518, 9225, 11296, 13768, 16751, 20295, 24546, 29583, 35591, 42685, 51112, 61028, 72757, 86523, 102740, 121720, 144007, 170018, 200461, 235910, 277270
Offset: 6

Views

Author

Ilya Gutkovskiy, Sep 06 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 52; CoefficientList[Series[Sum[x^k/Product[(1 - x^j), {j, 1, k}], {k, 6, nmax}], {x, 0, nmax}], x] // Drop[#, 6] &

Formula

G.f.: Sum_{k>=6} x^k / Product_{j=1..k} (1 - x^j).

A139672 Convolution of A008619 and A001400.

Original entry on oeis.org

1, 2, 5, 9, 17, 27, 44, 65, 97, 136, 191, 257, 346, 451, 587, 746, 946, 1177, 1461, 1786, 2178, 2623, 3151, 3746, 4443, 5223, 6126, 7131, 8283, 9558, 11007, 12603, 14403, 16377, 18588, 21003, 23692, 26618, 29858, 33372, 37244, 41430, 46022, 50972
Offset: 1

Views

Author

Alford Arnold, Apr 29 2008, May 01 2008

Keywords

Comments

This is row 21 of a table of values related to Molien series. It is the product of the sequence on row 3 (A008619) with the sequence on row 7 (A001400).
This table may be constructed by moving the rows of table A008284 to prime locations and generating the composite locations by multiplication in a manner similar to the calculation illustrated in the present sequence.
Rows 1 thru 20 and 22 thru 25 are as follows:

Programs

  • Maple
    a:= proc(n) local m, r; m:= iquo (n, 12, 'r'); r:= r+1; (19+ (145+ (260+ 15* (r+9)*r+ (405+ 90*r+ 216*m) *m) *m) *m) *m/5+ [0, 1, 2, 5, 9, 17, 27, 44, 65, 97, 136, 191][r]+ [0, 16, 37, 77, 128, 208, 307, 447, 616, 840, 1105, 1441][r]*m/2+ [0, 52, 119, 213, 328, 476, 651, 865, 1112, 1404, 1735, 2117][r]*m^2/2 end: seq (a(n), n=1..50); # Alois P. Heinz, Nov 10 2008
  • Mathematica
    CoefficientList[Series[x/((x^2+x+1)(x^2+1)(x+1)^3 (x-1)^6),{x,0,50}],x] (* or *) LinearRecurrence[{2,1,-3,0,-1,2,2,-1,0,-3,1,2,-1},{0,1,2,5,9,17,27,44,65,97,136,191,257},50] (* Harvey P. Dale, Feb 17 2016 *)

Formula

G.f.: x/((x^2+x+1)*(x^2+1)*(x+1)^3*(x-1)^6). - Alois P. Heinz, Nov 10 2008
a(n)= -A049347(n)/27 +(2*n+11)*(6*n^4+132*n^3+914*n^2+2068*n+1055)/69120 -(-1)^n*(51/512+n^2/256+11*n/256+A057077(n)/32 ). - R. J. Mathar, Nov 21 2008

Extensions

More terms from Alois P. Heinz, Nov 10 2008
Corrected A-number in definition. Added formula. - R. J. Mathar, Nov 21 2008

A347588 Number of partitions of n into at most 6 distinct parts.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 12, 15, 18, 22, 27, 32, 38, 46, 54, 64, 76, 89, 104, 122, 142, 165, 192, 221, 255, 294, 337, 385, 441, 501, 570, 646, 731, 824, 930, 1043, 1171, 1310, 1464, 1630, 1817, 2015, 2236, 2473, 2734, 3013, 3322, 3648, 4008, 4391, 4809, 5252, 5738, 6249
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 08 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 58; CoefficientList[Series[Sum[x^(k (k + 1)/2)/Product[(1 - x^j), {j, 1, k}], {k, 0, 6}], {x, 0, nmax}], x]
    Join[{1}, LinearRecurrence[{1, 1, 0, 0, -1, 0, -2, 0, 1, 1, 1, 1, 0, -2, 0, -1, 0, 0, 1, 1, -1}, {1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 12, 15, 18, 22, 27, 32, 38, 46, 54, 64, 76}, 58]]

Formula

G.f.: Sum_{k=0..6} x^(k*(k + 1)/2) / Product_{j=1..k} (1 - x^j).

A256540 Number of partitions of 4n into at most 6 parts.

Original entry on oeis.org

1, 5, 20, 58, 136, 282, 532, 931, 1540, 2432, 3692, 5427, 7760, 10829, 14800, 19858, 26207, 34085, 43752, 55491, 69624, 86499, 106491, 130019, 157532, 189509, 226479, 269005, 317683, 373165, 436140, 507334, 587535, 677571, 778311, 890691, 1015691, 1154336
Offset: 0

Views

Author

Colin Barker, Apr 01 2015

Keywords

Examples

			For n=1 the 5 partitions of 1*4 = 4 are [4], [1,3], [2,2], [1,1,2] and [1,1,1,1].
		

Crossrefs

Cf. A001402, A238340 (4 parts), A256539 (5 parts).

Programs

  • PARI
    concat(1, vector(40, n, k=0; forpart(p=4*n, k++, , [1,6]); k))
    
  • PARI
    Vec((3*x^8+5*x^7+11*x^6+11*x^5+13*x^4+10*x^3+8*x^2+2*x+1) / ((x-1)^6*(x^2+x+1)^2*(x^4+x^3+x^2+x+1)) + O(x^100))

Formula

G.f.: (3*x^8+5*x^7+11*x^6+11*x^5+13*x^4+10*x^3+8*x^2+2*x+1) / ((x-1)^6*(x^2+x+1)^2*(x^4+x^3+x^2+x+1)).
a(n) = A001402(4n). - Alois P. Heinz, Apr 01 2015

A069713 As a square array T(n,k) by antidiagonals, number of ways of partitioning k into up to n parts each no more than 5, or into up to 5 parts each no more than n; as a triangle t(n,k), number of ways of partitioning n into exactly k parts each no more than 6 (i.e., of arranging k indistinguishable standard dice to produce a total of n).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 2, 2, 1, 1, 0, 1, 3, 3, 2, 1, 1, 0, 0, 3, 4, 3, 2, 1, 1, 0, 0, 3, 5, 5, 3, 2, 1, 1, 0, 0, 2, 6, 6, 5, 3, 2, 1, 1, 0, 0, 2, 6, 8, 7, 5, 3, 2, 1, 1, 0, 0, 1, 6, 9, 9, 7, 5, 3, 2, 1, 1, 0, 0, 1, 6, 11, 11, 10, 7, 5, 3, 2, 1, 1, 0, 0, 0, 5, 11, 14, 12, 10, 7, 5
Offset: 0

Views

Author

Henry Bottomley, Apr 01 2002

Keywords

Examples

			As square array, rows start: 1,0,0,0,0,0,...; 1,1,1,1,1,1,...; 1,1,2,2,3,3,...; 1,1,2,3,4,5,...; 1,1,2,3,5,6,...; 1,1,2,3,5,7,...; etc. As triangle, rows start: 1; 0,1; 0,1,1; 0,1,1,1; 0,1,2,1,1; 0,1,2,2,1,1; 0,1,3,3,2,1,1; etc. T(3,7)=6 since 7 can be written as 5+2, 5+1+1, 4+3, 4+2+1, 3+3+1, 3+2+2; or alternatively as 2+2+1+1+1, 3+1+1+1, 2+2+2+1, 3+2+1+1, 3+2+2, 3+3+1. t(10,3)=6 since 10 can be written as 6+3+1, 6+2+2, 5+4+1, 5+3+2, 4+4+2, 4+3+3.
		

Crossrefs

Cf. A061676 for a similar triangle, though with distinguishable dice (and a different offset). Antidiagonal sums of T(n, k), i.e., row sums (over k) of t(n, k), are A001402. First 22 terms are same as A068914 (see formula).

Formula

If k<6 T(n,k) = A068914(n,k). T(n,k) = T(n,5n-k); t(n,k) = t(7n-k,k). T(floor(5n/2),n) = t(n,floor(7n/2)) = A001975(n).

A091498 The sixth column of triangle A091492, excluding leading zeros.

Original entry on oeis.org

1, 2, 3, 5, 8, 11, 17, 23, 31, 41, 54, 68, 88, 109, 135, 165, 202, 241, 291, 344, 407, 477, 559, 646, 751, 862, 990, 1129, 1288, 1456, 1651, 1857, 2089, 2338, 2617, 2911, 3244, 3594, 3982, 4395, 4851, 5330, 5862, 6420, 7031, 7677, 8382, 9120, 9929, 10775
Offset: 0

Views

Author

Paul D. Hanna, Jan 16 2004

Keywords

Comments

Excluding leading zeros, columns k=3,4,5, of triangle A091492 list the partitions of n into k parts.
This sequence is related to the partitions of n into at most 6 parts (A001402) since A(x)=(1+x-x^5)*G001402(x), where G001402(x) is the g.f. for A001402.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1+x-x^5)/((1-x)(1-x^2)(1-x^3)(1-x^4)(1-x^5)(1-x^6)),{x,0,60}],x] (* or *) LinearRecurrence[ {1,1,0,0,-1,0,-2,0,1,1,1,1,0,-2,0,-1,0,0,1,1,-1},{1,2,3,5,8,11,17,23,31,41,54,68,88,109,135,165,202,241,291,344,407},60](* Harvey P. Dale, Dec 09 2012 *)
  • PARI
    {a(n)=polcoeff( (1+x-x^5)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)) +O(x^(n+1)),n,x)}

Formula

G.f.: (1+x-x^5)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6))
a(0)=1, a(1)=2, a(2)=3, a(3)=5, a(4)=8, a(5)=11, a(6)=17, a(7)=23, a(8)=31, a(9)=41, a(10)=54, a(11)=68, a(12)=88, a(13)=109, a(14)=135, a(15)=165, a(16)=202, a(17)=241, a(18)=291, a(19)=344, a(20)=407, a(n)=a(n-1)+ a(n-2)- a(n-5)-2*a(n-7)+a(n-9)+a(n-10)+a(n-11)+a(n-12)-2*a(n-14)-a(n-16)+ a(n-19)+ a(n-20)-a (n-21). - Harvey P. Dale, Dec 09 2012

A194197 Number of partitions of 60n into parts <= 6.

Original entry on oeis.org

1, 19858, 436140, 2897747, 11402579, 33377536, 80758518, 171070425, 328507157, 585011614, 981355696, 1568220303, 2407275335, 3572259692, 5150061274, 7241796981, 9963892713, 13449163370, 17847892852, 23328914059, 30080688891, 38312388248, 48254972030, 60162269137
Offset: 0

Views

Author

Adi Dani, Aug 21 2011

Keywords

Comments

Number of partitions of 60n+k, 0<=k<60 into parts <=6 is a polynomial of degree 5 by variable n.

Crossrefs

Cf. A001402.

Programs

  • Mathematica
    Table[1 + (167n + 2325n^2 + 15400n^3 + 47250n^4 + 54000n^5)/6, {n, 0, 25}]
    LinearRecurrence[{6,-15,20,-15,6,-1},{1,19858,436140,2897747,11402579,33377536},30] (* Harvey P. Dale, Aug 12 2018 *)

Formula

a(n) = 1 +(167*n +2325*n^2 +15400*n^3 +47250*n^4 +54000*n^5)/6.
a(n) = A001402(60*n).
G.f.: (3331*x^5+161052*x^4+578757*x^3+317007*x^2+19852*x+1)/(x-1)^6. [Colin Barker, Jan 31 2013]
Previous Showing 11-17 of 17 results.