cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 52 results. Next

A002902 Number of n-step self-avoiding walks on a cubic lattice with a first step along the positive x, y, or z axis.

Original entry on oeis.org

3, 15, 75, 363, 1767, 8463, 40695, 193983, 926943, 4404939, 20967075, 99421371, 471987255, 2234455839, 10587573027, 50060937987, 236865126051, 1118861842047, 5288016609807, 24958663919367, 117855045251079, 555890991721203, 2622994107595707
Offset: 1

Views

Author

Keywords

References

  • B. D. Hughes, Random Walks and Random Environments, Oxford 1995, vol. 1, p. 462.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Equals (1/2)*A001412. Cf. A078717, A001411, A001413.

Extensions

Name amended by Scott R. Shannon, Sep 17 2020

A227338 Number of n-step self-avoiding walks on cubic lattice ending at point with x = k.

Original entry on oeis.org

1, 4, 1, 12, 8, 1, 44, 40, 12, 1, 172, 176, 84, 16, 1, 772, 748, 468, 144, 20, 1, 3308, 3248, 2332, 984, 220, 24, 1, 14924, 14280, 11068, 5756, 1788, 312, 28, 1, 64956, 63768, 51472, 30760, 12108, 2944, 420, 32, 1, 294252, 285296, 237832, 155912, 72948, 22732, 4516
Offset: 0

Views

Author

Joseph Myers, Jul 07 2013

Keywords

Comments

The number of walks ending with x = -k is the same as the number ending with x = k.

Examples

			Initial rows (paths of length 0, 1, 2, ...):
1;
4, 1;
12, 8, 1;
44, 40, 12, 1;
...
		

Crossrefs

Formula

For n > 0, A001412(n) = T(n,0) + 2 * Sum_{k=1..n} T(n,k). - Bert Dobbelaere, Jan 06 2019

A337400 Table read by antidiagonals: T(w,n) is the number of n-step self avoiding walks on a 3D cubic lattice confined inside a tube of cross section 2w X 2w where the walk starts at the middle of the tube.

Original entry on oeis.org

6, 26, 6, 98, 30, 6, 330, 146, 30, 6, 1130, 658, 150, 30, 6, 3746, 2858, 722, 150, 30, 6, 12802, 11802, 3450, 726, 150, 30, 6, 42498, 48282, 15930, 3530, 726, 150, 30, 6, 143610, 193714, 72522, 16826, 3534, 726, 150, 30, 6, 472242, 781114, 321794, 80010, 16922, 3534, 726, 150, 30, 6
Offset: 1

Views

Author

Scott R. Shannon, Aug 26 2020

Keywords

Examples

			T(1,2) = 26 as after a step in one of the four directions toward the tube's side the walk must turn along the side; this eliminates the 2-step straight walk in those four directions, so the total number of walks is 6*5 - 4 = 26.
The table begins:
6 26  98 330 1130  3746 12802  42498  143610  472242  1570714   5110426  16779354...
6 30 146 658 2858 11802 48282 193714  781114 3114890 12508114  49767002 199252346...
6 30 150 722 3450 15930 72522 321794 1415450 6134650 26527690 113725546 487875250...
6 30 150 726 3530 16826 80010 373962 1736538 7946946 36158802 162796866 730521658...
6 30 150 726 3534 16922 81274 386138 1833018 8615906 40370370 187477426 867587114...
6 30 150 726 3534 16926 81386 387834 1851546 8780162 41630146 196172338 923017178...
6 30 150 726 3534 16926 81390 387962 1853738 8806962 41893346 198386594 939630954...
6 30 150 726 3534 16926 81390 387966 1853882 8809714 41930594 198788354 943314378...
6 30 150 726 3534 16926 81390 387966 1853886 8809874 41933970 198838482 943903786...
6 30 150 726 3534 16926 81390 387966 1853886 8809878 41934146 198842546 943969482...
6 30 150 726 3534 16926 81390 387966 1853886 8809878 41934150 198842738 943974298...
6 30 150 726 3534 16926 81390 387966 1853886 8809878 41934150 198842742 943974506...
6 30 150 726 3534 16926 81390 387966 1853886 8809878 41934150 198842742 943974510...
		

Crossrefs

Cf. A337401 (start at center of tube's side), A337403 (start at tube's edge), A001412 (w->infinity), A116904, A337023, A259808, A039648.

Formula

For n <= w, T(w,n) = A001412(n).

A378903 Decimal expansion of the expected number of steps to termination by self-trapping of a self-avoiding random walk on the cubic lattice.

Original entry on oeis.org

3, 9, 5, 3, 7
Offset: 4

Views

Author

Hugo Pfoertner, Dec 14 2024

Keywords

Comments

See A077818 for more information and links. Since a more accurate value is probably 3953.78..., one should currently use 3953.8 +- 0.1 as a safe estimate.

Examples

			3953.7...
		

Crossrefs

A000759 Number of n-step self-avoiding walks on cubic lattice ending at point with x=0.

Original entry on oeis.org

1, 4, 12, 44, 172, 772, 3308, 14924, 64956, 294252, 1301044, 5930588, 26506948, 121290940, 546050988, 2505533940, 11340303508, 52147596788, 236995050900, 1091701675948, 4977541017540, 22961416861940, 104965762062612
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

Edited and extended by Joseph Myers, Jul 07 2013
a(17)-a(22) from Bert Dobbelaere, Jan 06 2019

A000760 Number of n-step self-avoiding walks on cubic lattice ending at point with x=1.

Original entry on oeis.org

1, 8, 40, 176, 748, 3248, 14280, 63768, 285296, 1285688, 5794436, 26261224, 119028156, 541876608, 2466620624, 11267536496, 51458718144, 235690960392, 1079212461992, 4953659984000, 22730713367468, 104520944666808
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

Edited and extended by Joseph Myers, Jul 07 2013
a(17)-a(22) from Bert Dobbelaere, Jan 06 2019

A000761 Number of n-step self-avoiding walks on cubic lattice ending at point with x=2.

Original entry on oeis.org

1, 12, 84, 468, 2332, 11068, 51472, 237832, 1095384, 5040568, 23168528, 106496816, 489379904, 2250000884, 10345888480, 47604198576, 219096141188, 1009071461380, 4648802248764, 21431064157200, 98828123716260
Offset: 2

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

Edited and extended by Joseph Myers, Jul 07 2013
a(17)-a(22) from Bert Dobbelaere, Jan 06 2019

A000762 Number of n-step self-avoiding walks on cubic lattice ending at point with x=3.

Original entry on oeis.org

1, 16, 144, 984, 5756, 30760, 155912, 766424, 3698848, 17648312, 83558828, 393534176, 1846227984, 8637479208, 40325165648, 187980582568, 875268197452, 4072021100336, 18931821861960, 87979249474568
Offset: 3

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

Edited and extended by Joseph Myers, Jul 07 2013
a(17)-a(22) from Bert Dobbelaere, Jan 06 2019

A079156 Sum of end-to-end Manhattan distances over all self-avoiding n-step walks on cubic lattice. Numerator of mean Manhattan displacement s(n)=a(n)/A078717.

Original entry on oeis.org

10, 67, 396, 2201, 11870, 62571, 324896, 1665349, 8457890, 42605267, 213305636, 1061939193, 5263752278, 25984214383, 127848694424, 627084275649, 3067923454498
Offset: 2

Views

Author

Hugo Pfoertner, Dec 29 2002

Keywords

Comments

A conjectured asymptotic behavior for the mean Manhattan displacement is shown in a diagram lim n-> infinity a(n)/(A078717(n)*n^nu)=c, for some values of nu near 0.59 at Pfoertner link

Examples

			a(2)=10 because the A078717(2)=5 different self-avoiding 2-step walks end at (1,0,-1),(1,0,1),(1,-1,0),(1,1,0),(2,0,0)->d=2. a(2)=5*2=10. See also "Distribution of end point distance" at Pfoertner link
		

References

Crossrefs

Cf. A001412, A078717, A078605 (corresponding square displacement).

Programs

  • Fortran
    c Program for distance counting available at Pfoertner link.

Formula

a(n)= sum l=1, A078717(n) (|i_l| + |j_l| + |k_l|) where (i_l, j_l, k_l) are the end points of all different self-avoiding n-step walks starting at (0, 0, 0)

A335806 The number of n-step self avoiding walks on a 3D cubic lattice confined inside a box of size 2x2x2 where the walk starts at the middle of the box's edge.

Original entry on oeis.org

1, 4, 12, 40, 118, 358, 936, 2600, 6212, 16068, 34936, 83708, 163452, 357056, 613592, 1205716, 1770616, 3073480, 3715920, 5573480, 5255048, 6591160, 4353912, 4330096, 1513712, 1061392, 0
Offset: 0

Views

Author

Scott R. Shannon, Aug 14 2020

Keywords

Examples

			a(1) = 4 as the walk is free to move one step in four directions.
a(2) = 12. A first step along either edge leading to the corner leaves two possible second steps. A first step to the centre of either face can be followed by a second step to three edges or to the center of the cube, four steps in all. Thus the total number of 2-step walks is 2*2+2*4 = 12.
a(26) = 0 as it is not possible to visit all 26 available lattice points when the walk starts from the middle of the box's edge.
		

Crossrefs

Cf. A336862 (other box sizes), A337021 (start at center of box), A337033 (start at center of face), A337034 (start at corner of box), A001412, A259808, A039648.

Formula

For n>=27 all terms are 0 as the walk contains more steps than there are available lattice points in the 2x2x2 box.
Previous Showing 21-30 of 52 results. Next