A224230
Egyptian fraction expansion of Pi.
Original entry on oeis.org
3, 8, 61, 5020, 128541455, 162924332716605980, 28783052231699298507846309644849796, 871295615653899563300996782209332544845605756266650946342214549769447
Offset: 0
Pi = 3 + 1/8 + 1/61 + 1/5020 + ...
A001467
Denominators of an expansion for Pi.
Original entry on oeis.org
1, 1, 1, 7, -791, -3748629, 151648960887729, -1323497544567561138595307148089, 41444465282455711991644958522615049159671653083333293470875123
Offset: 0
a(4) = -791 since Pi - (1/1) - (1/1) - (1/1) - (1/7) = -0.001264489... is closer to 1/(-791) = -0.001264222... than to 1/(-790) = -0.0012658228...
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Mohammad K. Azarian, An Expression for Pi, Problem #870, College Mathematics Journal, Vol. 39, No. 1, January 2008, p. 66. Solution appeared in Vol. 40, No. 1, January 2009, pp. 62-64.
- H. E. Salzer, The approximation of numbers as sums of reciprocals, Amer. Math. Monthly, 54 (1947), 135-142.
- J. W. Wrench, Jr., Letter to N. J. A. Sloane, Mar 27 1974
- Index entries for sequences related to the number Pi
-
x=Pi; for(k=0,8,if(x<1,d=round(1/x),d=1); x=x-1/d; print(d,", ")) \\ Jaume Oliver Lafont, Feb 21 2009
A144983
Denominators of greedy Egyptian fraction for 1/sqrt(3) (A020760).
Original entry on oeis.org
2, 13, 2341, 41001128, 3352885935529869, 17147396444547741051849884001699, 1847333322606272250132077006229901193256553492442739965269739579
Offset: 1
Cf.
A001466,
A006487,
A006524,
A006525,
A006526,
A020760,
A069139,
A069261,
A110820,
A117116,
A118323,
A118324,
A118325,
A144835,
A132480-
A132574,
A144984-
A145003.
-
a = {}; k = N[1/Sqrt[3], 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a
A243020
Denominators of Egyptian fraction expansion of Pi, without repetition.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 27, 744, 1173268, 2586625801171, 14348276635209672362238685, 1062286904072440687703470835520966381484062674280821
Offset: 1
Pi = 1 + 1/2 + 1/3 + ... + 1/12 + 1/27 + 1/744 + ...
A052385
a(n)*10^n are the denominators of the greedy alternating Egyptian fraction expansion of Pi - 3 of the form Sum_{n>=0} (-1)^n / (a(n)*10^n).
Original entry on oeis.org
7, 79, 7498, 5830114, 8652011824287, 13597204960705459608723126, 34810495772672927583903155370200945603822050731477, 1443540369391032855921234984363709782471552979298036142515612532020988429757781997263178546460721652
Offset: 0
Boris Gourevitch (sai1042(AT)ensai.fr), Mar 10 2000
Pi = 3 + 1/7 - 1/(10 * 79) + 1/(10^2 * 7498) - 1/(10^3 * 5830114) + ...
-
s={}; x = Pi - 3; Do[a = Floor[1/((-10)^k * x)]; AppendTo[s, a]; x-=1/((-10)^k*a), {k, 0, 7}]; s (* Amiram Eldar, Jan 23 2019 *)
A156736
Signed greedy Egyptian fraction for Pi/2.
Original entry on oeis.org
1, 2, 14, -1582, -7497258, 303297921775458, -2646995089135122277190614296178, 82888930564911423983289917045230098319343306166666586941750246
Offset: 0
1+1/2+1/14=11/7=(1/2)(22/7)
1+1/2+1/14-1/1582=355/226=(1/2)(355/113)
-
x=Pi/2; for (k=0,7, d=round(1/x); x=x-1/d; print1(d,", "))
A156750
Greedy Egyptian fraction for Pi/2.
Original entry on oeis.org
1, 2, 15, 243, 69282, 36600664305, 6435072487994269232829, 364103502021384610224777078613738432189483892
Offset: 0
-
x=Pi/2; for (k=0, 7, d=ceil(1/x); x=x-1/d; print(d,", "))
A142725
Denominators of an Egyptian fraction for 1/Sqrt[17] = 0.242535625...
Original entry on oeis.org
5, 24, 1151, 6727710, 97954001297811, 12083213443785578998604325741, 2111557350230332542969297514824119073134312726162508784857, 5126406954746155312559668571658555244727150562238830979161154018392336359308299948544053564102183773577991816755308
Offset: 1
A069139,
A006487,
A006526,
A006525,
A006524,
A001466,
A110820,
A117116,
A118323,
A118324,
A118325,
A144835,
A132480-
A132574,
A069261,
A144984-
A145003
-
a = {}; k = N[1/Sqrt[17], 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a (*Artur Jasinski*)
A142726
Denominators of an Egyptian fraction for 1/Sqrt[20] = 0.2236067977...
Original entry on oeis.org
5, 43, 2850, 9380555, 131539825706327, 25568462906010064277774504354, 1702783284378767791750994476557209698496292570221862357616, 9282809298390896944529722953873240985108041182275536393531898614770319137100914187360035180181565645720539192811580
Offset: 1
A069139,
A006487,
A006526,
A006525,
A006524,
A001466,
A110820,
A117116,
A118323,
A118324,
A118325,
A144835,
A132480-
A132574,
A069261,
A144984-
A145003
-
a = {}; k = N[1/Sqrt[20], 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a (*Artur Jasinski*)
A144985
Denominators of an Egyptian fraction for 1/Sqrt[6]=0.408248290463863...
Original entry on oeis.org
3, 14, 287, 484228, 624850913463, 832896370765715143490072, 7620764031777359266114991754446899201236457828088, 74466937067918173179787895367258766085493130434332689333832927329763999409894621431449951498850730
Offset: 1
A069139,
A006487,
A006526,
A006525,
A006524,
A001466,
A110820,
A117116,
A118323,
A118324,
A118325,
A144835,
A132480-
A132574,
A069261,
A144984-
A145003
-
a = {}; k = N[1/Sqrt[6], 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a (*Artur Jasinski*)
Comments