cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 479 results. Next

A286460 Compound filter (2-adic valuation & sum of the divisors): a(n) = P(A001511(n), A000203(n)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

1, 8, 7, 39, 16, 80, 29, 157, 79, 173, 67, 438, 92, 302, 277, 600, 154, 782, 191, 949, 497, 668, 277, 1957, 466, 905, 781, 1656, 436, 2630, 497, 2284, 1129, 1487, 1129, 4281, 704, 1832, 1541, 4282, 862, 4658, 947, 3658, 3004, 2630, 1129, 8133, 1597, 4373, 2557, 4953, 1432, 7262, 2557, 7507, 3161, 4097, 1771, 14368, 1892, 4658, 5357, 8785, 3487, 10442, 2279
Offset: 1

Views

Author

Antti Karttunen, May 10 2017

Keywords

Crossrefs

Cf. A000593, A146076 (sequences matching to this filter), also A000203, A161942, A286260, A286357.

Programs

  • PARI
    A000203(n) = sigma(n);
    A001511(n) = (1+valuation(n,2));
    A286460(n) = (1/2)*(2 + ((A001511(n)+A000203(n))^2) - A001511(n) - 3*A000203(n));
    for(n=1, 10000, write("b286460.txt", n, " ", A286460(n)));
    
  • Python
    from sympy import divisor_sigma as D
    def a001511(n): return bin(n)[2:][::-1].index("1") + 1
    def T(n, m): return ((n + m)**2 - n - 3*m + 2)//2
    def a(n): return T(a001511(n), D(n))
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, May 12 2017
  • Scheme
    (define (A286460 n) (* (/ 1 2) (+ (expt (+ (A001511 n) (A000203 n)) 2) (- (A001511 n)) (- (* 3 (A000203 n))) 2)))
    

Formula

a(n) = (1/2)*(2 + ((A001511(n)+A000203(n))^2) - A001511(n) - 3*A000203(n)).

A246678 Permutation of natural numbers: a(1) = 1, a(2n+1) = 1 + 2*a(n), a(2n) = A242378(A001511(n), (1+A000265(n))) - 1.

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 7, 6, 9, 14, 11, 24, 17, 26, 15, 10, 13, 20, 19, 34, 29, 44, 23, 48, 49, 32, 35, 124, 53, 80, 31, 12, 21, 74, 27, 54, 41, 62, 39, 76, 69, 38, 59, 174, 89, 134, 47, 120, 97, 50, 99, 64, 65, 98, 71, 342, 249, 104, 107, 624, 161, 242, 63, 16, 25, 56, 43, 244, 149, 224, 55, 90, 109, 68, 83
Offset: 1

Views

Author

Antti Karttunen, Sep 01 2014

Keywords

Comments

See the comments in A246676. This is a similar permutation, except for odd numbers, which are here recursively permuted by the emerging permutation itself. The even bisection halved gives A246680, the odd bisection from a(3) onward with one subtracted and then halved gives this sequence back.

Crossrefs

Inverse: A246677.
Variants: A246676, A246684.
Even bisection halved: A246680.

Formula

a(1) = 1, a(2n+1) = 1 + 2*a(n), a(2n) = A242378(A001511(n), (1+A000265(n))) - 1. [Where the bivariate function A242378(k,n) changes each prime p(i) in the prime factorization of n to p(i+k), i.e., it's the result of A003961 iterated k times starting from n].

A060571 Tower of Hanoi: the optimal way to move an even number of disks from peg 0 to peg 2 or an odd number from peg 0 to peg 1 is on move n to move disk A001511 from peg A060571 (here) to peg A060572.

Original entry on oeis.org

0, 0, 1, 0, 2, 2, 0, 0, 1, 1, 2, 1, 0, 0, 1, 0, 2, 2, 0, 2, 1, 1, 2, 2, 0, 0, 1, 0, 2, 2, 0, 0, 1, 1, 2, 1, 0, 0, 1, 1, 2, 2, 0, 2, 1, 1, 2, 1, 0, 0, 1, 0, 2, 2, 0, 0, 1, 1, 2, 1, 0, 0, 1, 0, 2, 2, 0, 2, 1, 1, 2, 2, 0, 0, 1, 0, 2, 2, 0, 2, 1, 1, 2, 1, 0, 0, 1, 1, 2, 2, 0, 2, 1, 1, 2, 2, 0, 0, 1, 0, 2, 2, 0, 0, 1
Offset: 1

Views

Author

Henry Bottomley, Apr 03 2001

Keywords

Comments

a(n) is equal to a(2n) with the 1's and 2s reversed, thus a(n) = a(4n). - Donald Sampson (marsquo(AT)hotmail.com), Dec 01 2003

Examples

			Start by moving first disk from peg 0 (to peg 1), second disk from peg 0 (to peg 2), first disk form peg 1 (to peg 2), etc. so sequence starts 0,0,1,...
		

Crossrefs

Formula

If n>2^A001511(n) then a(n)=a(n-2^A001511(n))-(-1)^A001511(n) mod 3 =A060572(n-2^A001511(n)), otherwise a(k)=0. Also A001511(n)-th digit from right of A055662(n-1).

A129628 Inverse Moebius transform of A001511.

Original entry on oeis.org

1, 3, 2, 6, 2, 6, 2, 10, 3, 6, 2, 12, 2, 6, 4, 15, 2, 9, 2, 12, 4, 6, 2, 20, 3, 6, 4, 12, 2, 12, 2, 21, 4, 6, 4, 18, 2, 6, 4, 20, 2, 12, 2, 12, 6, 6, 2, 30, 3, 9, 4, 12, 2, 12, 4, 20, 4, 6, 2, 24, 2, 6, 6, 28, 4, 12, 2, 12, 4, 12, 2, 30, 2, 6, 6, 12, 4, 12, 2, 30, 5, 6, 2, 24, 4, 6, 4, 20
Offset: 1

Views

Author

Ralf Stephan, May 31 2007

Keywords

Comments

Dirichlet convolution of A000005 with A209229. - Ridouane Oudra, Jul 25 2025

Crossrefs

Programs

  • Maple
    seq(add(padic[ordp](2*d, 2), d in numtheory[divisors](n)), n=1..100); # Ridouane Oudra, Sep 30 2024
  • Mathematica
    f[p_, e_] := If[p==2, (e+1)*(e+2)/2, e+1]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 30 2020 *)
  • PARI
    a(n)={sumdiv(n, d, 1 + valuation(d, 2))} \\ Andrew Howroyd, Aug 04 2018

Formula

a(2n) = a(n) + A000005(2n), a(2n+1) = A000005(2n+1).
Dirichlet g.f.: zeta(s)^2 * 2^s/(2^s-1). - Ralf Stephan, Jun 17 2007, corrected by Vaclav Kotesovec, Feb 02 2019
a(n) = Sum_{d|n} A001511(d). - Andrew Howroyd, Aug 04 2018
Sum_{k=1..n} a(k) ~ 2*n * (2*gamma - 1 + log(n/2)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Feb 02 2019
Multiplicative with a(2^e) = (e+1)*(e+2)/2, and a(p^e) = e+1 for p > 2. - Amiram Eldar, Sep 30 2020
From Ridouane Oudra, Sep 30 2024: (Start)
a(n) = Sum_{i=0..A007814(n)} tau(n/2^i).
a(n) = Sum_{d|2*n} A007814(d).
a(n) = (1/2)*A001511(n)*A099777(n).
a(n) = (1/2)*(A001511(n) + 1)*A000005(n).
a(n) = A115364(n)*A001227(n). (End)

A244316 a(0) = 0, after which, if A176137(n) = 1, a(n) = A001511(A244230(n)), otherwise a(n) = a(n-A197433(A244230(n)-1)).

Original entry on oeis.org

0, 1, 2, 1, 1, 3, 1, 2, 1, 1, 2, 1, 1, 3, 4, 1, 2, 1, 1, 3, 1, 2, 1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 2, 1, 1, 3, 4, 1, 2, 1, 1, 3, 5, 1, 2, 1, 1, 3, 1, 2, 1, 1, 2, 1, 1, 3, 4, 1, 2, 1, 1, 3, 1, 2, 1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 2, 1, 1, 3, 4, 1, 2, 1, 1, 3, 1, 2, 1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 2, 1, 1, 3, 4, 1, 2, 1, 1, 3, 5, 1, 2, 1, 1, 3, 1, 2, 1, 1, 2, 1, 1, 3, 4, 1, 2, 1, 1, 3, 1, 2, 1, 1, 2, 1, 6
Offset: 0

Views

Author

Antti Karttunen, Jun 25 2014

Keywords

Comments

For n >= 1, a(n) tells the one-based position of the digit (from the right) where the iteration stopped at, when constructing a Semigreedy Catalan representation of n as described in A244159.
Algorithm for constructing the sequence: Find the largest Catalan number which is less than or equal to n (this is A081290(n) = A000108(k), where k = A244160(n), that is, the corresponding index of that Catalan number), and subtract that from n. Then check whether the previous Catalan number, C(m) = A000108(m), where m = k-1, exceeds the remaining n, and if it does not, then subtract that also from n, and keep on doing the same for lesser and lesser Catalan numbers, comparing and also subtracting them (whenever it is possible without going less than zero) from n, until either n becomes zero, or after subtracting C(1) = 1 from n, it still has not reached zero. In the latter case, find again the largest Catalan number which is less than or equal to remaining n, and start the process again. However, when at some point n finally reaches zero, then the index k of the last Catalan number, A000108(k) which was subtracted from n before it reached zero, is our result, a(n) = k. [Here n = the original value of n, from which we started subtracting initially from].
If n is one of the terms of A197433, meaning that if it can be represented as a sum of distinct Catalan numbers as n = C(i) + C(j) + ... + C(k) (which representation then necessarily is unique), then a(n) = min(i,j,...,k).

Crossrefs

Formula

a(0) = 0, and for n >= 1, if A176137(n) = 1, a(n) = A001511(A244230(n)), otherwise a(n) = a(n-A197433(A244230(n)-1)).
For n >= 1, a(n) = A244315(n)+1.
For n >= 1, a(A000108(n)) = n and a(A014138(n)) = a(A014143(n)) = 1.

A269374 Permutation of natural numbers: a(1) = 1, a(n) = A255551(A001511(n), a(A003602(n))) - 1.

Original entry on oeis.org

1, 2, 3, 6, 5, 4, 11, 8, 9, 10, 7, 18, 21, 28, 15, 12, 17, 22, 19, 38, 13, 16, 35, 26, 41, 58, 55, 102, 29, 40, 23, 14, 33, 46, 43, 80, 37, 52, 75, 56, 25, 34, 31, 60, 69, 100, 51, 44, 81, 118, 115, 206, 109, 160, 203, 152, 57, 82, 79, 144, 45, 64, 27, 20, 65, 94, 91, 164, 85, 124, 159, 120, 73, 106, 103, 186, 149, 220, 111, 96, 49
Offset: 1

Views

Author

Antti Karttunen, Mar 01 2016

Keywords

Comments

Permutation obtained from the Lucky sieve.
This sequence can be represented as a binary tree. For n > 2, each left hand child is obtained by doubling the contents of the parent node and subtracting one, and each right hand child is obtained by applying A269372(n), when the parent node contains n:
1
|
...................2...................
3 6
5......../ \........4 11......../ \........8
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
9 10 7 18 21 28 15 12
17 22 19 38 13 16 35 26 41 58 55 102 29 40 23 14
etc.

Crossrefs

Inverse: A269373.
Cf. also A269375, A269377 and also A249814, A269384.

Formula

a(1) = 1, a(n) = A255551(A001511(n), a(A003602(n))) - 1.
a(1) = 1, a(2n) = A269372(a(n)), a(2n+1) = (2*a(n+1))-1.
Other identities. For all n >= 0:
A000035(a(n)) = A000035(n). [This permutation preserves the parity of n.]

A269384 Permutation of natural numbers: a(1) = 1, a(n) = A255127(A001511(n), a(A003602(n))) - 1.

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 7, 6, 9, 14, 15, 18, 13, 20, 11, 10, 17, 26, 27, 34, 29, 44, 35, 30, 25, 38, 39, 48, 21, 32, 19, 12, 33, 50, 51, 64, 53, 80, 67, 58, 57, 86, 87, 108, 69, 104, 59, 54, 49, 74, 75, 94, 77, 116, 95, 84, 41, 62, 63, 78, 37, 56, 23, 16, 65, 98, 99, 124, 101, 152, 127, 112, 105, 158, 159, 198, 133, 200
Offset: 1

Views

Author

Antti Karttunen, Mar 01 2016

Keywords

Comments

Permutation obtained from the Ludic sieve.
This sequence can be represented as a binary tree. For n > 2, each left hand child is obtained by doubling the contents of the parent node and subtracting one, and each right hand child is obtained by applying A269382(n), when the parent node contains n:
1
|
...................2...................
3 4
5......../ \........8 7......../ \........6
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
9 14 15 18 13 20 11 10
17 26 27 34 29 44 35 30 25 38 39 48 21 32 19 12
etc.

Crossrefs

Inverse: A269383.
Cf. also A269385, A269387 and also A249814, A269374.

Formula

a(1) = 1, a(n) = A255127(A001511(n), a(A003602(n))) - 1.
a(1) = 1, a(2n) = A269382(a(n)), a(2n+1) = (2*a(n+1))-1.
Other identities. For all n >= 0:
A000035(a(n)) = A000035(n). [This permutation preserves the parity of n.]

A286252 Compound filter: a(n) = P(A001511(1+n), A278222(n)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

1, 5, 2, 18, 2, 23, 7, 59, 2, 23, 16, 94, 7, 80, 29, 195, 2, 23, 16, 94, 16, 467, 67, 355, 7, 80, 67, 706, 29, 302, 121, 672, 2, 23, 16, 94, 16, 467, 67, 355, 16, 467, 436, 1894, 67, 1832, 277, 1331, 7, 80, 67, 706, 67, 1832, 631, 2779, 29, 302, 277, 2704, 121, 1178, 497, 2422, 2, 23, 16, 94, 16, 467, 67, 355, 16, 467, 436, 1894, 67, 1832, 277, 1331, 16, 467, 436
Offset: 0

Views

Author

Antti Karttunen, May 07 2017

Keywords

Crossrefs

Programs

  • PARI
    A001511(n) = (1+valuation(n,2));
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ Modified from code of M. F. Hasler
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ This function from Charles R Greathouse IV, Aug 17 2011
    A278222(n) = A046523(A005940(1+n));
    A286252(n) = (2 + ((A001511(1+n)+A278222(n))^2) - A001511(1+n) - 3*A278222(n))/2;
    for(n=0, 16384, write("b286252.txt", n, " ", A286252(n)));
    
  • Python
    from sympy import prime, factorint
    import math
    def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
    def A(n): return n - 2**int(math.floor(math.log(n, 2)))
    def b(n): return n + 1 if n<2 else prime(1 + (len(bin(n)[2:]) - bin(n)[2:].count("1"))) * b(A(n))
    def a005940(n): return b(n - 1)
    def P(n):
        f = factorint(n)
        return sorted([f[i] for i in f])
    def a046523(n):
        x=1
        while True:
            if P(n) == P(x): return x
            else: x+=1
    def a278222(n): return a046523(a005940(n + 1))
    def a001511(n): return 2 + bin(n - 1)[2:].count("1") - bin(n)[2:].count("1")
    def a(n): return T(a001511(n + 1), a278222(n)) # Indranil Ghosh, May 07 2017
  • Scheme
    (define (A286252 n) (* (/ 1 2) (+ (expt (+ (A001511 (+ 1 n)) (A278222 n)) 2) (- (A001511 (+ 1 n))) (- (* 3 (A278222 n))) 2)))
    

Formula

a(n) = (1/2)*(2 + ((A001511(1+n)+A278222(n))^2) - A001511(1+n) - 3*A278222(n)).

A302035 a(1) = 0, for n > 1, a(n) = A001511(A260739(n)); Number of instances of (the smallest) Ludic factor A272565(n) in n.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 3, 1, 1, 3, 1, 1, 1, 2, 1, 1, 2, 5, 2, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 4, 1, 1, 4, 3, 1, 1, 2, 1, 1, 2, 3, 2, 1, 1, 2, 1, 1, 1, 6, 1, 1, 1, 2, 3, 1, 1, 3, 2, 1, 1, 2, 1, 1, 2, 4, 2, 1, 1, 2, 3, 1, 1, 3, 1, 1, 1, 2, 5, 1, 1, 5, 1, 1, 1, 2, 2, 1, 1, 3, 2
Offset: 1

Views

Author

Antti Karttunen, Apr 01 2018

Keywords

Comments

An A067029 analog for "Ludic factorization": iterating the map n -> A302034(n) until 1 is reached, and taking the Ludic factor (A272565) of each term gives a sequence of distinct Ludic numbers (A003309) in ascending order, while applying this function (A302035) to those terms gives the corresponding "exponents" of those Ludic factors, that is, the count of consecutive occurrences of each when iterating the map n -> A302032(n), which gives the same factors with repetitions. Permutation pair A302025/A302026 maps between the Ludic factorization and the ordinary prime factorization of n. See also comments and examples in A302032.

Crossrefs

Formula

a(1) = 0; for n > 1, a(n) = A001511(A260739(n)).
For n > 1, a(n) = A302025(A067029(A302026(n))).

A324724 a(n) = A001511(A324712(n)), with a(n) = 0 if A324712(n) = 0.

Original entry on oeis.org

0, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 3, 2, 5, 1, 1, 1, 3, 1, 2, 1, 4, 1, 2, 3, 1, 1, 3, 1, 4, 2, 2, 2, 3, 1, 3, 3, 6, 1, 4, 1, 1, 1, 2, 1, 4, 1, 1, 8, 1, 1, 3, 1, 3, 3, 4, 1, 2, 1, 2, 3, 4, 2, 1, 1, 1, 2, 2, 1, 3, 1, 2, 1, 1, 2, 1, 1, 4, 5, 2, 1, 1, 4, 2, 3, 4, 1, 1, 1, 1, 2, 2, 3, 5, 1, 4, 1, 2, 1, 1, 1, 8, 3
Offset: 1

Views

Author

Antti Karttunen, Mar 17 2019

Keywords

Crossrefs

Programs

Formula

If A324712(n) = 0, then a(n) = 0, otherwise a(n) = A001511(A324712(n)).
a(p) = 1 for all primes p.
A324828(n) = [1 == a(n)], where [ ] is the Iverson bracket.
Previous Showing 21-30 of 479 results. Next