cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 479 results. Next

A183036 G.f.: exp( Sum_{n>=1} A001511(n)*2^A001511(n)*x^n/n ) where A001511(n) equals the 2-adic valuation of 2n.

Original entry on oeis.org

1, 2, 6, 10, 24, 38, 74, 110, 200, 290, 486, 682, 1096, 1510, 2314, 3118, 4650, 6182, 8946, 11710, 16616, 21522, 29886, 38250, 52328, 66406, 89394, 112382, 149496, 186610, 245086, 303562, 394814, 486066, 625686, 765306, 977112, 1188918, 1504954
Offset: 0

Views

Author

Paul D. Hanna, Dec 19 2010

Keywords

Comments

Compare to B(x), the g.f. of the binary partitions (A000123):
B(x) = exp( Sum_{n>=1} 2^A001511(n)*x^n/n ) = (1-x)^(-1)*Product_{n>=0} 1/(1 - x^(2^n)).
2^A001511(n) exactly divides 2n.

Examples

			G.f.: A(x) = 1 + 2*x + 6*x^2 + 10*x^3 + 24*x^4 + 38*x^5 + 74*x^6 +...
log(A(x)) = 2*x + 8*x^2/2 + 2*x^3/3 + 24*x^4/4 + 2*x^5/5 + 8*x^6/6 + 2*x^7/7 + 64*x^8/8 + 2*x^9/9 + 8*x^10/10 +...+ A183037(n)*x^n/n +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n,valuation(2*m,2)*2^valuation(2*m,2)*x^m/m)+x*O(x^n)),n)}

Formula

G.f. satisfies: A(x) = (1-x^2)/(1-x)^2 * A(x^2)^2/A(x^4).

A183037 a(n) = A001511(n)*2^A001511(n) where A001511(n) equals the 2-adic valuation of 2n.

Original entry on oeis.org

2, 8, 2, 24, 2, 8, 2, 64, 2, 8, 2, 24, 2, 8, 2, 160, 2, 8, 2, 24, 2, 8, 2, 64, 2, 8, 2, 24, 2, 8, 2, 384, 2, 8, 2, 24, 2, 8, 2, 64, 2, 8, 2, 24, 2, 8, 2, 160, 2, 8, 2, 24, 2, 8, 2, 64, 2, 8, 2, 24, 2, 8, 2, 896, 2, 8, 2, 24, 2, 8, 2, 64, 2, 8, 2, 24, 2, 8, 2, 160, 2, 8, 2, 24, 2, 8, 2, 64, 2, 8, 2, 24, 2
Offset: 1

Views

Author

Paul D. Hanna, Dec 19 2010

Keywords

Comments

2n/2^A001511(n) is odd for n >= 1, so that A001511(n) is logarithmic in nature.

Examples

			L.g.f.: A(x) = 2*x + 8*x^2/2 + 2*x^3/3 + 24*x^4/4 + 2*x^5/5 + 8*x^6/6 + 2*x^7/7 + 64*x^8/8 + 2*x^9/9 + 8*x^10/10 + ...
The g.f. of A183036 begins:
exp(A(x)) = 1 + 2*x + 6*x^2 + 10*x^3 + 24*x^4 + 38*x^5 + 74*x^6 + ...
		

Crossrefs

Cf. A183036.

Programs

  • Mathematica
    Array[# 2^# &[IntegerExponent[#, 2] + 1] &, 93] (* Michael De Vlieger, Nov 06 2018 *)
  • PARI
    {a(n)=valuation(2*n,2)*2^valuation(2*n,2)}
    
  • Python
    def A183037(n): return (m:=n&-n)*m.bit_length()<<1 # Chai Wah Wu, Jul 12 2022

Formula

Logarithmic derivative of A183036.

A217553 G.f.: exp( Sum_{n>=1} 4^A001511(n) * x^n/n ), where 2^A001511(n) is the highest power of 2 that divides 2*n.

Original entry on oeis.org

1, 4, 16, 44, 128, 308, 752, 1628, 3584, 7268, 14864, 28556, 55296, 102036, 189168, 337084, 603136, 1044676, 1814288, 3064556, 5188352, 8578548, 14205936, 23041308, 37420800, 59680548, 95265552, 149620812, 235161216, 364301652, 564627952, 863725948, 1321756672
Offset: 0

Views

Author

Paul D. Hanna, Oct 30 2012

Keywords

Comments

Compare g.f. to the g.f. of binary partitions (A000123):
exp( Sum_{n>=1} 2^A001511(n) * x^n/n ).

Examples

			G.f.: A(x) = 1 + 4*x + 16*x^2 + 44*x^3 + 128*x^4 + 308*x^5 + 752*x^6 +...
where
log(A(x)) = 4^1*x + 4^2*x^2/2 + 4^1*x^3/3 + 4^4*x^4/4 + 4^1*x^5/5 + 4^2*x^6/6 + 4^1*x^7/7 + 4^4*x^8/8 + 4^1*x^9/9 + 4^2*x^10/10 + 4^1*x^11/11 + 4^4*x^12/12 +...+ 4^A001511(n)*x^n/n +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n,4^valuation(2*m,2)*x^m/m)+x*O(x^n)),n)}
    for(n=0,31,print1(a(n),", "))

Formula

Self-convolution of A162581.

A253790 a(1) = 1; thereafter, odd numbers such that A055396(n) = A001511(n-1).

Original entry on oeis.org

1, 3, 5, 15, 27, 39, 51, 63, 75, 85, 87, 99, 111, 123, 125, 135, 147, 159, 171, 183, 195, 205, 207, 209, 217, 219, 231, 243, 245, 255, 267, 279, 291, 303, 315, 325, 327, 329, 339, 351, 363, 365, 375, 387, 399, 411, 423, 435, 445, 447, 459, 471, 481, 483, 485, 495, 507, 519, 531, 543, 553, 555
Offset: 1

Views

Author

Antti Karttunen, Jan 13 2015

Keywords

Comments

After 1, all such odd numbers whose smallest prime factor A020639(n) = A000040(k+1), where k = A007814(n-1), the 2-adic valuation of the preceding even number.
Any odd number present in A253789 must be one of these terms.

Crossrefs

A286367 Compound filter: a(n) = P(A001511(n), A286364(n)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

1, 3, 2, 6, 4, 5, 2, 10, 22, 8, 2, 9, 4, 5, 11, 15, 4, 30, 2, 13, 121, 5, 2, 14, 46, 8, 407, 9, 4, 17, 2, 21, 121, 8, 11, 39, 4, 5, 11, 19, 4, 138, 2, 9, 67, 5, 2, 20, 22, 57, 11, 13, 4, 437, 11, 14, 121, 8, 2, 24, 4, 5, 2212, 28, 211, 138, 2, 13, 121, 17, 2, 49, 4, 8, 92, 9, 121, 17, 2, 26, 7261, 8, 2, 156, 211, 5, 11, 14, 4, 80, 11, 9, 121, 5, 11, 27, 4, 30
Offset: 1

Views

Author

Antti Karttunen, May 08 2017

Keywords

Comments

This sequence contains, in addition to the information contained in A286364 (which packs the values of A286361(n) and A286363(n) to a single value with the pairing function A000027), also the highest power of 2 dividing n. Note that this is more information than A286365, as it stores only the parity of the exponent of 2.
For all i, j: a(i) = a(j) => A286161(i) = A286161(j).

Crossrefs

Programs

  • Python
    from sympy import factorint
    from operator import mul
    def P(n):
        f = factorint(n)
        return sorted([f[i] for i in f])
    def a046523(n):
        x=1
        while True:
            if P(n) == P(x): return x
            else: x+=1
    def A(n, k):
        f = factorint(n)
        return 1 if n == 1 else reduce(mul, [1 if i%4==k else i**f[i] for i in f])
    def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
    def a286364(n): return T(a046523(n/A(n, 1)), a046523(n/A(n, 3)))
    def a001511(n): return 2 + bin(n - 1)[2:].count("1") - bin(n)[2:].count("1")
    def a(n): return T(a001511(n), a286364(n)) # Indranil Ghosh, May 09 2017
  • Scheme
    (define (A286367 n) (* (/ 1 2) (+ (expt (+ (A001511 n) (A286364 n)) 2) (- (A001511 n)) (- (* 3 (A286364 n))) 2)))
    

Formula

a(n) = (1/2)*(2 + ((A001511(n)+A286364(n))^2) - A001511(n) - 3*A286364(n)).

A286451 Compound filter (2-adic valuation of sigma(n) & 2-adic valuation of n): a(n) = P(A286357(n), A001511(n)), where P(n,k) is sequence A000027 used as a pairing function, with a(1) = 0 by an explicit convention.

Original entry on oeis.org

0, 2, 6, 4, 3, 9, 10, 7, 1, 5, 6, 13, 3, 14, 10, 11, 3, 2, 6, 8, 21, 9, 10, 18, 1, 5, 10, 19, 3, 14, 21, 16, 15, 5, 15, 4, 3, 9, 10, 12, 3, 27, 6, 13, 3, 14, 15, 24, 1, 2, 10, 8, 3, 14, 10, 25, 15, 5, 6, 19, 3, 27, 10, 22, 6, 20, 6, 8, 21, 20, 10, 7, 3, 5, 6, 13, 21, 14, 15, 17, 1, 5, 6, 34, 6, 9, 10, 18, 3, 5, 15, 19, 36, 20, 10, 31, 3, 2, 6, 4, 3, 14, 10
Offset: 1

Views

Author

Antti Karttunen, May 13 2017

Keywords

Crossrefs

Programs

  • PARI
    A001511(n) = (1+valuation(n,2));
    A286357(n) = A001511(sigma(n));
    A286451(n) = if(1==n,0,(1/2)*(2 + ((A286357(n)+A001511(n))^2) - A286357(n) - 3*A001511(n)));
    for(n=1, 10000, write("b286451.txt", n, " ", A286451(n)));
    
  • Python
    from sympy import divisor_sigma as D
    def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
    def a001511(n): return bin(n)[2:][::-1].index("1") + 1
    def a(n): return 0 if n==1 else T(a001511(D(n)), a001511(n)) # Indranil Ghosh, May 14 2017
  • Scheme
    (define (A286451 n) (if (= 1 n) 0 (* (/ 1 2) (+ (expt (+ (A286357 n) (A001511 n)) 2) (- (A286357 n)) (- (* 3 (A001511 n))) 2))))
    

Formula

a(1) = 0; for n > 1, a(n) = (1/2)*(2 + ((A286357(n)+A001511(n))^2) - A286357(n) - 3*A001511(n)).

A286461 Compound filter (2-adic valuation of n & 4k+1,4k+3 prime-signature combination of 2n-1): a(n) = P(A001511(n), A286364((2*n)-1)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

1, 5, 4, 9, 22, 5, 4, 32, 4, 5, 121, 9, 46, 437, 4, 20, 121, 17, 4, 24, 4, 5, 67, 14, 22, 17, 4, 24, 121, 5, 4, 2562, 211, 5, 121, 9, 4, 107, 121, 14, 7261, 5, 211, 24, 4, 17, 121, 41, 4, 2280, 4, 9, 254, 5, 4, 32, 4, 17, 67, 24, 22, 17, 631, 35, 121, 5, 121, 783, 4, 5, 121, 32, 211, 2280, 4, 9, 67, 17, 4, 41, 121, 5, 254, 9, 46, 2280, 4, 140, 121, 5, 4, 24
Offset: 1

Views

Author

Antti Karttunen, May 10 2017

Keywords

Crossrefs

Programs

Formula

a(n) = (1/2)*(2 + ((A001511(n)+A286364((2*n)-1))^2) - A001511(n) - 3*A286364((2*n)-1)).

A286595 Compound filter (2-adic valuation & deficiency/abundance): a(n) = P(A001511(n), A286449(n)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

1, 3, 2, 6, 4, 12, 11, 10, 16, 5, 22, 48, 37, 8, 11, 15, 46, 68, 67, 108, 22, 107, 106, 175, 137, 30, 154, 18, 172, 138, 191, 21, 67, 173, 106, 256, 232, 57, 106, 329, 277, 138, 301, 13, 37, 353, 352, 501, 407, 467, 191, 24, 466, 138, 497, 634, 562, 632, 631, 744, 704, 192, 106, 28, 352, 138, 742, 39, 301, 38, 781, 950, 862, 597, 596, 58, 631, 138, 904, 1133, 407
Offset: 1

Views

Author

Antti Karttunen, May 21 2017

Keywords

Crossrefs

Programs

Formula

a(n) = (1/2)*(2 + ((A001511(n)+A286449(n))^2) - A001511(n) - 3*A286449(n)).

A318449 Numerators of the sequence whose Dirichlet convolution with itself yields A001511, the 2-adic valuation of 2n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 3, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 3, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 35, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen and Andrew Howroyd, Aug 29 2018

Keywords

Crossrefs

Cf. A001511, A318450 (denominators).

Programs

  • Mathematica
    a1511[n_] := IntegerExponent[2n, 2];
    f[1] = 1; f[n_] := f[n] = 1/2 (a1511[n] - Sum[f[d] f[n/d], {d, Divisors[ n][[2 ;; -2]]}]);
    Table[f[n] // Numerator, {n, 1, 105}] (* Jean-François Alcover, Sep 13 2018 *)
  • PARI
    up_to = 65537;
    A001511(n) = 1+valuation(n,2);
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA317937.
    v318449_51 = DirSqrt(vector(up_to, n, A001511(n)));
    A318449(n) = numerator(v318449_51[n]);

Formula

a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A001511(n) - Sum_{d|n, d>1, d 1.
Sum_{k=1..n} A318449(k) / A318450(k) ~ n * sqrt(2/(Pi*log(n))) * (1 + (1 - gamma/2 + log(2)/2)/(2*log(n))), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, May 10 2025

A324817 a(n) = sign(A323244(n))*A001511(A323244(n)), with a(n) = 0 if A323244(n) = 0.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 2, 0, 1, 1, 2, 1, 5, 2, 2, 1, 3, 1, 2, -1, 2, 1, 2, -3, 2, 3, 2, 1, 2, 1, 2, 2, 2, -2, 2, 1, 9, -3, 2, 1, 3, 1, 2, 4, 2, 1, 2, -3, 1, 4, 2, 1, 3, -1, 2, -3, 3, 1, 2, 1, 2, 5, 2, 2, 2, 1, 2, 2, 4, 1, 2, 1, 2, 2, 2, -2, 2, 1, 2, -3, 2, 1, 2, -4, 2, -3, 2, 1, 3, -1, 2, 2, 2, -3, 2, 1, 1, -3, 2, 1, 3, 1, 2, -3
Offset: 1

Views

Author

Antti Karttunen, Mar 17 2019

Keywords

Crossrefs

Programs

Formula

If A323244(n) = 0, then a(n) = 0, otherwise a(n) = sign(A323244(n)) * A001511(A323244(n)).
a(p) = 1 for all primes p.
Previous Showing 41-50 of 479 results. Next