A065922
Bessel polynomial {y_n}'(4).
Original entry on oeis.org
0, 1, 27, 846, 32290, 1472535, 78444261, 4789283212, 329976556596, 25336918039005, 2145912573891295, 198763621138900026, 19988975122377164982, 2169175884299414423251, 252661578519463668740745, 31442098485128401965118680, 4163361054820272025075769896
Offset: 0
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
-
Table[Sum[(n+k+1)!*2^(k-1)/((n-k-1)!*k!), {k,0,n-1}], {n,0,20}] (* Vaclav Kotesovec, Jul 22 2015 *)
RecurrenceTable[{a[0]==0,a[1]==1,a[n]==((2n-1)^3 a[n-1]+n^2 a[n-2])/ (n-1)^2}, a,{n,20}] (* Harvey P. Dale, May 23 2016 *)
-
for(n=0,50, print1(sum(k=0,n-1, (n+k+1)!*2^(k-1)/((n-k-1)!*k!)), ", ")) \\ G. C. Greubel, Aug 14 2017
A006199
Bessel polynomial {y_n}'(-1).
Original entry on oeis.org
0, 1, -3, 21, -185, 2010, -25914, 386407, -6539679, 123823305, -2593076255, 59505341676, -1484818160748, 40025880386401, -1159156815431055, 35891098374564105, -1183172853341759129, 41372997479943753582, -1529550505546305534414, 59608871544962952539335
Offset: 1
- G. Kreweras and Y. Poupard, Sur les partitions en paires d'un ensemble fini totalement ordonné, Publications de l'Institut de Statistique de l'Université de Paris, 23 (1978), 57-74.
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
Join[{0}, Table[2*n*Pochhammer[1/2, n]*(-2)^(n - 1)* Hypergeometric1F1[1 - n, -2*n, -2], {n,1,50}]] (* G. C. Greubel, Aug 14 2017 *)
-
for(n=0,50, print1(sum(k=0,n-1, ((n+k)!/(k!*(n-k)!))*(-1/2)^k), ", ")) \\ G. C. Greubel, Aug 14 2017
A065707
Bessel polynomial {y_n}'(-2).
Original entry on oeis.org
0, 1, -9, 126, -2270, 49995, -1301139, 39066076, -1329148764, 50536328085, -2123542798685, 97722882268506, -4887863677728954, 264025383760041631, -15317578742680490535, 949914821498248213560, -62707584375936061905464, 4390358319593012839913001
Offset: 0
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
-
Join[{0}, Table[2*n*Pochhammer[1/2, n]*(-4)^(n - 1)*Hypergeometric1F1[1 - n, -2*n, -1], {n, 1, 50}]] (* G. C. Greubel, Aug 14 2017 *)
-
for(n=0,50, print1(sum(k=0,n-1, (n+k+1)!/(2*(n-k-1)!*k!)), ", ")) \\ G. C. Greubel, Aug 14 2017
A144513
a(n) = Sum_{k=0..n} (n+k+2)!/((n-k)!*k!*2^k).
Original entry on oeis.org
2, 18, 162, 1670, 19980, 274932, 4296278, 75324762, 1466031690, 31386435410, 733391707752, 18578222154648, 507246285802802, 14851746921266010, 464244744007818090, 15431886798641124662, 543593886328031841828, 20228083875146926867932, 792934721766833544369830
Offset: 0
Equals 2*
A001514 (with a different offset).
-
f2:=proc(n) local k; add((n+k+2)!/((n-k)!*k!*2^k),k=0..n); end; [seq(f2(n),n=0..50)];
-
{a(n) = sum(k=0, n, (n+k+2)!/((n-k)!*k!*2^k))} \\ Seiichi Manyama, Apr 07 2019
Comments