A059623
As upper right triangle, number of weakly unimodal partitions of n where initial part is k (n >= k >= 1).
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 8, 3, 2, 1, 1, 15, 5, 3, 2, 1, 1, 27, 8, 5, 3, 2, 1, 1, 47, 13, 7, 5, 3, 2, 1, 1, 79, 21, 11, 7, 5, 3, 2, 1, 1, 130, 33, 16, 11, 7, 5, 3, 2, 1, 1, 209, 52, 24, 15, 11, 7, 5, 3, 2, 1, 1, 330, 80, 35, 22, 15, 11, 7, 5, 3, 2, 1, 1, 512, 122, 52, 31, 22, 15, 11, 7, 5, 3
Offset: 1
Rows are {1,1,2,4,8,15,...}, {1,1,2,3,5,8,...}, {1,1,2,3,5,7,...} etc.
As an upper right triangle:
1, 1, 2, 4, 8, 15, ...,
1, 1, 2, 3, 5, 8, ...,
1, 1, 2, 3, 5, 7, ...,
...
As a left downward triangle, it starts:
1;
1, 1;
2, 1, 1;
4, 2, 1, 1;
8, 3, 2, 1, 1;
15, 5, 3, 2, 1, 1;
27, 8, 5, 3, 2, 1, 1;
...
T(9,3)=11 since 9 can be written as 3+6, 3+5+1, 3+4+2, 3+4+1+1, 3+3+3, 3+3+2+1, 3+3+1+1+1, 3+2+2+2, 3+2+2+1+1, 3+2+1+1+1+1 or 3+1+1+1+1+1.
A226541
Number of unimodal compositions of n where the maximal part appears three times.
Original entry on oeis.org
1, 0, 0, 1, 0, 0, 1, 2, 3, 5, 7, 11, 16, 24, 34, 51, 71, 102, 143, 201, 276, 384, 522, 714, 964, 1301, 1739, 2328, 3084, 4085, 5377, 7064, 9226, 12036, 15616, 20228, 26092, 33584, 43067, 55125, 70308, 89502, 113598, 143889, 181755, 229160, 288186, 361750, 453046, 566346, 706464
Offset: 0
Cf.
A006330 (max part appears once),
A114921 (max part appears twice).
Cf.
A188674 (max part m appears m times),
A001522 (max part m appears at least m times).
Cf.
A001523 (max part appears any number of times).
Cf.
A000009 (symmetric, max part m appears once; also symmetric, max part appears an odd number of times).
Cf.
A035363 (symmetric, max part m appears twice; also symmetric, max part appears an even number of times).
Cf.
A087897 (symmetric, max part m appears 3 times).
Cf.
A027349 (symmetric, max part m appears m times),
A189357 (symmetric, max part m appears at least m times).
-
N=66; x='x+O('x^N); Vec(sum(n=0,N, x^(3*n) / prod(k=1,n-1, 1-x^k )^2 ))
A332725
Heinz numbers of integer partitions whose negated first differences are not unimodal.
Original entry on oeis.org
90, 126, 180, 198, 234, 252, 270, 306, 342, 350, 360, 378, 396, 414, 450, 468, 504, 522, 525, 540, 550, 558, 594, 612, 630, 650, 666, 684, 700, 702, 720, 738, 756, 774, 792, 810, 825, 828, 846, 850, 882, 900, 910, 918, 936, 950, 954, 975, 990, 1008, 1026, 1044
Offset: 1
The sequence of terms together with their prime indices begins:
90: {1,2,2,3}
126: {1,2,2,4}
180: {1,1,2,2,3}
198: {1,2,2,5}
234: {1,2,2,6}
252: {1,1,2,2,4}
270: {1,2,2,2,3}
306: {1,2,2,7}
342: {1,2,2,8}
350: {1,3,3,4}
360: {1,1,1,2,2,3}
378: {1,2,2,2,4}
396: {1,1,2,2,5}
414: {1,2,2,9}
450: {1,2,2,3,3}
468: {1,1,2,2,6}
504: {1,1,1,2,2,4}
522: {1,2,2,10}
525: {2,3,3,4}
540: {1,1,2,2,2,3}
For example, 350 is the Heinz number of (4,3,3,1), with negated first differences (1,0,2), which is not unimodal, so 350 is in the sequence.
The complement is too full.
The enumeration of these partitions by sum is
A332284.
The version where the last part is taken to be 0 is
A332832.
Non-unimodal permutations are
A059204.
Non-unimodal compositions are
A115981.
Non-unimodal normal sequences are
A328509.
Partitions with non-unimodal run-lengths are
A332281.
Heinz numbers of partitions with non-unimodal run-lengths are
A332282.
Heinz numbers of partitions with weakly increasing differences are
A325360.
Cf.
A001523,
A007052,
A240026,
A332280,
A332283,
A332285,
A332286,
A332288,
A332294,
A332579,
A332639,
A332642.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
Select[Range[1000],!unimodQ[Differences[primeMS[#]]]&]
A333145
Number of unimodal negated permutations of the multiset of prime indices of n.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 3, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 4, 1, 1, 2, 2, 2, 3, 1, 2, 2, 2, 1, 4, 1, 2, 2, 2, 1, 2, 1, 3, 2, 2, 1, 4, 2, 2, 2, 2, 1, 4, 1, 2, 2, 1, 2, 4, 1, 2, 2, 4, 1, 3, 1, 2, 3, 2, 2, 4, 1, 2, 1, 2, 1, 4, 2, 2, 2
Offset: 1
The a(n) permutations for n = 2, 6, 18, 30, 90, 162, 210, 450:
(1) (12) (122) (123) (1223) (12222) (1234) (12233)
(21) (212) (213) (2123) (21222) (2134) (21233)
(221) (312) (2213) (22122) (3124) (22133)
(321) (3122) (22212) (3214) (31223)
(3212) (22221) (4123) (32123)
(3221) (4213) (32213)
(4312) (33122)
(4321) (33212)
(33221)
The complementary divisors are counted by
A069157.
The non-negated version is
A332288.
A more interesting version is
A332741.
The complement is counted by
A333146.
A001523 counts unimodal compositions.
A007052 counts unimodal normal sequences.
A028233 gives the highest power of the least prime factor, quotient
A028234.
A332578 counts compositions whose negation is unimodal.
A332638 counts partitions with unimodal negated run-lengths.
A332642 lists numbers with non-unimodal negated unsorted prime signature.
Cf.
A056239,
A112798,
A115981,
A124010,
A328509,
A332283,
A332294,
A332639,
A332669,
A332670,
A332671.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
Table[Length[Select[Permutations[primeMS[n]],unimodQ[-#]&]],{n,30}]
A059619
As upper right triangle, number of strongly unimodal partitions of n (strongly unimodal means strictly increasing then strictly decreasing) where initial part is k.
Original entry on oeis.org
1, 1, 1, 1, 0, 1, 3, 1, 1, 1, 4, 2, 0, 1, 1, 6, 2, 1, 1, 1, 1, 10, 4, 2, 1, 1, 1, 1, 15, 6, 3, 1, 2, 1, 1, 1, 21, 9, 4, 2, 1, 2, 1, 1, 1, 30, 12, 6, 3, 2, 2, 2, 1, 1, 1, 43, 18, 8, 5, 3, 2, 2, 2, 1, 1, 1, 59, 25, 12, 6, 3, 3, 3, 2, 2, 1, 1, 1, 82, 34, 17, 9, 5, 4, 3, 3, 2, 2, 1, 1, 1, 111, 48, 22, 12
Offset: 0
Rows start:
1, 1, 1, 3, 4, 6, 10, 15, 21, 30, 43, 59, 82, 111, ...
1, 0, 1, 2, 2, 4, 6, 9, 12, 18, 25, 34, 48, ...
1, 1, 0, 1, 2, 3, 4, 6, 8, 12, 17, 22, ...
1, 1, 1, 1, 1, 2, 3, 5, 6, 9, 12, ...
1, 1, 1, 2, 1, 2, 3, 3, 5, ...
1, 1, 1, 2, 2, 2, 3, 4, ...
1, 1, 1, 2, 2, 3, 3, ...
1, 1, 1, 2, 2, 3, ...
1, 1, 1, 2, 2, ...
1, 1, 1, 2, ...
1, 1, 1, ...
1, 1, ...
1, ... etc.
T(16,6)=8 since 16 can be written as 6+10, 6+9+1, 6+8+2, 6+7+3, 6+7+2+1, 6+5+4+1, 6+5+3+2, or 6+4+3+2+1 (but for example neither 6+6+4 nor 6+8+1+1 which are only weakly unimodal).
-
s[n_?Positive, k_] := s[n, k] = Sum[s[n-k, j], {j, 0, k-1}]; s[0, 0] = 1; s[0, ] = 0; s[?Negative, ] = 0; t[n, k_] := t[n, k] = s[n, k] + Sum[t[n-k, j], {j, k+1, n}]; Table[t[n, k], {n, 0, 13}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 11 2012 *)
A229706
Triangular array read by rows: T(n,k) is the number of unimodal compositions of n with greatest part equal to k; n>=1, 1<=k<=n.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 6, 5, 2, 1, 1, 9, 9, 5, 2, 1, 1, 12, 16, 10, 5, 2, 1, 1, 16, 25, 19, 10, 5, 2, 1, 1, 20, 39, 32, 20, 10, 5, 2, 1, 1, 25, 56, 54, 35, 20, 10, 5, 2, 1, 1, 30, 80, 84, 61, 36, 20, 10, 5, 2, 1, 1, 36, 109, 129, 99, 64, 36, 20, 10, 5, 2, 1
Offset: 1
1;
1, 1;
1, 2, 1;
1, 4, 2, 1;
1, 6, 5, 2, 1;
1, 9, 9, 5, 2, 1;
1, 12, 16, 10, 5, 2, 1;
1, 16, 25, 19, 10, 5, 2, 1;
1, 20, 39, 32, 20, 10, 5, 2, 1;
1, 25, 56, 54, 35, 20, 10, 5, 2, 1;
T(5,3) = 5 because we have: 3+2 = 2+3 = 3+1+1 = 1+3+1 = 1+1+3.
- E. M. Wright, Stacks, Quart. J. Math. Oxford 19 (1968) 313-320, table s(r).
-
b:= proc(n, t, k) option remember; `if`(n=0, `if`(k=0, 1, 0),
`if`(k>0, `if`(n b(n, 1, k):
seq(seq(T(n, k), k=1..n), n=1..16); # Alois P. Heinz, Oct 03 2013
-
Map[Select[#,#>0&]&,Drop[Transpose[Table[CoefficientList[Series[x^n/(1-x^n)/Product[1-x^i,{i,1,n-1}]^2,{x,0,nn}],x],{n,1,nn}]],1]]//Grid
A238871
Number of weakly unimodal compositions of n with absolute difference of successive parts <= 1.
Original entry on oeis.org
1, 1, 2, 4, 6, 10, 14, 21, 27, 40, 52, 70, 92, 124, 156, 206, 264, 335, 425, 539, 673, 847, 1052, 1300, 1611, 1990, 2433, 2977, 3638, 4420, 5367, 6496, 7829, 9439, 11341, 13590, 16270, 19425, 23135, 27525, 32697, 38745, 45844, 54168, 63875, 75247, 88493, 103892
Offset: 0
The a(8) = 27 such compositions are:
01: [ 1 1 1 1 1 1 1 1 ]
02: [ 1 1 1 1 1 1 2 ]
03: [ 1 1 1 1 1 2 1 ]
04: [ 1 1 1 1 2 1 1 ]
05: [ 1 1 1 1 2 2 ]
06: [ 1 1 1 2 1 1 1 ]
07: [ 1 1 1 2 2 1 ]
08: [ 1 1 1 2 3 ]
09: [ 1 1 2 1 1 1 1 ]
10: [ 1 1 2 2 1 1 ]
11: [ 1 1 2 2 2 ]
12: [ 1 2 1 1 1 1 1 ]
13: [ 1 2 2 1 1 1 ]
14: [ 1 2 2 2 1 ]
15: [ 1 2 2 3 ]
16: [ 1 2 3 2 ]
17: [ 2 1 1 1 1 1 1 ]
18: [ 2 2 1 1 1 1 ]
19: [ 2 2 2 1 1 ]
20: [ 2 2 2 2 ]
21: [ 2 3 2 1 ]
22: [ 2 3 3 ]
23: [ 3 2 1 1 1 ]
24: [ 3 2 2 1 ]
25: [ 3 3 2 ]
26: [ 4 4 ]
27: [ 8 ]
A288578
q-Expansion of wedge character chi^(2)(q).
Original entry on oeis.org
1, 2, 5, 9, 18, 31, 55, 91, 151, 240, 381, 587, 900, 1352, 2018, 2966, 4332, 6250, 8962, 12725, 17962, 25147, 35015, 48414, 66603, 91071, 123945, 167786, 226154, 303375, 405337, 539249, 714740, 943659, 1241605, 1627812, 2127302, 2770966, 3598567
Offset: 0
-
chi := proc(l,e)
local gf,m,n,f;
gf := 0 ;
for m from 0 to e+1 do
f := 1;
for n from 1 to min(m+abs(l),e-m+1) do
f := f/(1-q^n) ;
end do:
for n from 1 to min(m,e-m+1) do
f := f/(1-q^n) ;
end do:
gf := gf+f*q^m ;
end do:
expand(gf) ;
coeftayl(%,q=0,e) ;
end proc:
A288578 := proc(n)
chi(2,n) ;
end proc:
for n from 0 do
printf("%d,\n",A288578(n)) ;
end do: # R. J. Mathar, Jul 04 2017
A332871
Number of compositions of n whose run-lengths are not weakly increasing.
Original entry on oeis.org
0, 0, 0, 0, 1, 4, 8, 24, 55, 128, 282, 625, 1336, 2855, 6000, 12551, 26022, 53744, 110361, 225914, 460756, 937413, 1902370, 3853445, 7791647, 15732468, 31725191, 63907437, 128613224, 258626480, 519700800, 1043690354, 2094882574, 4202903667, 8428794336, 16897836060
Offset: 0
The a(4) = 1 through a(6) = 8 compositions:
(112) (113) (114)
(221) (1113)
(1112) (1131)
(1121) (1221)
(2112)
(11112)
(11121)
(11211)
For example, the composition (2,1,1,2) has run-lengths (1,2,1), which are not weakly increasing, so (2,1,1,2) is counted under a(6).
The version for the compositions themselves (not run-lengths) is
A056823.
The version for unsorted prime signature is
A112769, with dual
A071365.
The case without weakly decreasing run-lengths either is
A332833.
The complement is counted by
A332836.
Compositions that are not unimodal are
A115981.
Compositions with equal run-lengths are
A329738.
Compositions whose run-lengths are not unimodal are
A332727.
Cf.
A001523,
A072704,
A100883,
A181819,
A329744,
A329766,
A332641,
A332669,
A332726,
A332745,
A332746,
A332834,
A332835.
-
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!LessEqual@@Length/@Split[#]&]],{n,0,10}]
A335375
Numbers k such that the k-th composition in standard order (A066099) is neither unimodal nor co-unimodal.
Original entry on oeis.org
45, 54, 77, 89, 91, 93, 102, 108, 109, 110, 118, 141, 153, 155, 157, 166, 173, 177, 178, 179, 181, 182, 183, 185, 187, 189, 198, 204, 205, 206, 214, 216, 217, 218, 219, 220, 221, 222, 230, 236, 237, 238, 246, 269, 281, 283, 285, 297, 301, 305, 306, 307, 309
Offset: 1
The sequence together with the corresponding compositions begins:
45: (2,1,2,1)
54: (1,2,1,2)
77: (3,1,2,1)
89: (2,1,3,1)
91: (2,1,2,1,1)
93: (2,1,1,2,1)
102: (1,3,1,2)
108: (1,2,1,3)
109: (1,2,1,2,1)
110: (1,2,1,1,2)
118: (1,1,2,1,2)
141: (4,1,2,1)
153: (3,1,3,1)
155: (3,1,2,1,1)
157: (3,1,1,2,1)
166: (2,3,1,2)
173: (2,2,1,2,1)
177: (2,1,4,1)
178: (2,1,3,2)
179: (2,1,3,1,1)
Non-unimodal compositions are ranked by
A335373.
Non-co-unimodal compositions are ranked by
A335374.
Unimodal normal sequences are
A007052.
Non-unimodal permutations are
A059204.
Non-unimodal compositions are
A115981.
Non-unimodal normal sequences are
A328509.
Numbers with non-unimodal unsorted prime signature are
A332282.
Co-unimodal compositions are
A332578.
Numbers with non-co-unimodal unsorted prime signature are
A332642.
Non-co-unimodal compositions are
A332669.
Cf.
A112798,
A227038,
A329398,
A332281,
A332286,
A332287,
A332638,
A332639,
A332643,
A332670,
A332873,
A333146.
-
unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
Select[Range[0,100],!unimodQ[stc[#]]&&!unimodQ[-stc[#]]&]
Comments